Archive for December, 2011

Post-9/11 & Post-Mumbai Fire Engineering – What Future ?

Previous Posts in This Series …

2011-10-25:  NIST’s Recommendations on the 9-11 WTC Building Collapses … GROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30)

2011-11-18:  NIST WTC Recommendations 4-7 > Structural Fire EnduranceGROUP 2.  Enhanced Fire Endurance of Structures – Recommendations 4, 5, 6 & 7

2011-11-24:  NIST WTC Recommendations 8-11 > New Design of StructuresGROUP 3.  New Methods for Fire Resisting Design of Structures – Recommendations 8, 9, 10 & 11

2011-11-25:  NIST WTC Recommendations 12-15 > Improved Active ProtectionGROUP 4.  Improved Active Fire Protection – Recommendations 12, 13, 14 & 15

2011-11-30:  NIST Recommendations 16-20 > Improved People EvacuationGROUP 5.  Improved Building Evacuation – Recommendations 16, 17, 18, 19 & 20

2011-12-04:  NIST WTC Recommendations 21-24 > Improved FirefightingGROUP 6.  Improved Emergency Response – Recommendations 21, 22, 23 & 24

2011-12-07:  NIST WTC Recommendations 25-28 > Improved PracticesGROUP 7.  Improved Procedures and Practices – Recommendations 25, 26, 27 & 28

2011-12-08:  NIST WTC Recommendations 29-30 > Improved Fire EducationGROUP 8.  Education and Training – Recommendations 29 & 30 (out of 30)

.

Colour image showing 'The Cloud' Residential Tower Project, in Seoul (South Korea) ... which will be completed in 2015. Design by MVRDV Architects, The Netherlands. Click to enlarge.

Colour image showing 'The Cloud' Residential Tower Project, in Seoul (South Korea) ... which will be completed in 2015. Design by MVRDV Architects, The Netherlands. Click to enlarge.

.

2011-12-15:  You know what is coming soon … so Merry Christmas & Happy New Year to One and All !!

.

  1.     There were 2 Important Reasons for undertaking this Series of Posts …

(a)       The General Public, and particularly Client Organizations, should be facilitated in directly accessing the core content of the 2005 NIST WTC Recommendations.  Up to now, many people have found this to be a daunting task.  More importantly, I also wanted to clearly show that implementation of the Recommendations is still proceeding far too slowly … and that today, many significant aspects of these Recommendations remain unimplemented.  Furthermore, in the case of some recent key national standards, e.g. British Standard BS 9999, which was published in 2008 … the NIST Recommendations were entirely ignored.

As a golden rule … National Building Codes/Regulations and National Standards … cannot, should not, and must not … be applied without informed thought and many questions, on the part of a building designer !

(b)       With the benefit of hindsight, and our practical experience in FireOx International … I also wanted to add a necessary 2011 Technical Commentary to the NIST Recommendations … highlighting some of the radical implications, and some of the limitations, of these Recommendations … in the hope of initiating a much-needed and long overdue international discussion on the subject.

Colour photograph showing the Taipei 101 Tower, in Taiwan ... which was completed in 2004. Designed by C.Y. Lee & Partners Architects/Planners, Taiwan. Click to enlarge.

Colour photograph showing the Taipei 101 Tower, in Taiwan ... which was completed in 2004. Designed by C.Y. Lee & Partners Architects/Planners, Taiwan. Click to enlarge.

” Architecture is the language of a culture.”

” A living building is the information space where life can be found.  Life exists within the space.  The information of space is then the information of life.  Space is the body of the building.  The building is therefore the space, the information, and the life.”

C.Y. Lee & Partners Architects/Planners, Taiwan

[ This is a local dialect of familiar Architectural Language.  However, the new multi-aspect language of Sustainable Design is fast evolving.  In order to perform as an effective and creative member of a Trans-Disciplinary Design & Construction Team … can Fire Engineers quickly learn to communicate on these wavelengths ??   Evidence to date suggests not ! ]

.

  2.     ‘Climate Change’ & ‘Energy Stability’ – Relentless Driving Forces for Sustainable Design !

Not only is Sustainable Fire Engineering inevitable … it must be !   And not at some distant point in the future … but now … yesterday !!   There is such a build-up of pressure on Spatial Planners and Building Designers to respond quickly, creatively, intuitively and appropriately to the relentless driving forces of Climate Change (including climate change mitigation, adaptation, and severe weather resilience) and Energy Stability (including energy efficiency and conservation) … that there is no other option for the International Fire Science and Engineering Community but to adapt.  Adapt and evolve … or become irrelevant !!

And one more interesting thought to digest … ‘Green’ is not the answer.  ‘Green’ looks at only one aspect of Sustainable Human & Social Development … the Environment.  This is a blinkered, short-sighted, simplistic and ill-conceived approach to realizing the complex goal of a Safe and Sustainable Built Environment.  ‘Green’ is ‘Sustainability’ for innocent children !!

Colour image showing the Shanghai Tower Project, in China ... which will be completed in 2014. Design by Gensler Architects & Planners, USA. Click to enlarge.

Colour image showing the Shanghai Tower Project, in China ... which will be completed in 2014. Design by Gensler Architects & Planners, USA. Click to enlarge.

.

  (a)      Organization for Economic Co-Operation & Development (OECD) – 2012’s Environmental Outlook to 2050

Extract from Pre-Release Climate Change Chapter, November 2011 …

Climate change presents a global systemic risk to society.  It threatens the basic elements of life for all people: access to water, food production, health, use of land, and physical and natural capital.  Inadequate attention to climate change could have significant social consequences for human wellbeing, hamper economic growth and heighten the risk of abrupt and large-scale changes to our climatic and ecological systems.  The significant economic damage could equate to a permanent loss in average per capita world consumption of more than 14% (Stern, 2006).  Some poor countries would be likely to suffer particularly severely.  This chapter demonstrates how avoiding these economic, social and environmental costs will require effective policies to shift economies onto low-carbon and climate-resilient growth paths.’

  (b)      U.N. World Meteorological Organization (WMO) Greenhouse Gas Bulletin No.7, November 2011

Executive Summary …

The latest analysis of observations from the WMO Global Atmosphere Watch (GAW) Programme shows that the globally averaged mixing ratios of Carbon Dioxide (CO2), Methane (CH4) and Nitrous Oxide (N2O) reached new highs in 2010, with CO2 at 389.0 parts per million (ppm), CH4 at 1808 parts per billion (ppb) and N2O at 323.2 ppb.  These values are greater than those in pre-industrial times (before 1750) by 39%, 158% and 20%, respectively.  Atmospheric increases of CO2 and N2O from 2009 to 2010 are consistent with recent years, but they are higher than both those observed from 2008 to 2009 and those averaged over the past 10 years.  Atmospheric CH4 continues to increase, consistent with the past three years.  The U.S. National Oceanic & Atmospheric Administration (NOAA) Annual Greenhouse Gas Index shows that from 1990 to 2010 radiative forcing by long-lived Greenhouse Gases (GHG’s) increased by 29%, with CO2 accounting for nearly 80% of this increase.  Radiative forcing of N2O exceeded that of CFC-12, making N2O the third most important long-lived Greenhouse Gas.

  (c)      International Energy Agency (IEA) – World Energy Outlook, November 2011

Extract from Executive Summary …

There are few signs that the urgently needed change in direction in global energy trends is underway.  Although the recovery in the world economy since 2009 has been uneven, and future economic prospects remain uncertain, global primary energy demand rebounded by a remarkable 5% in 2010, pushing CO2 emissions to a new high.  Subsidies that encourage wasteful consumption of fossil fuels jumped to over $400 billion.  The number of people without access to electricity remained unacceptably high at 1.3 Billion, around 20% of the world’s population.  Despite the priority in many countries to increase energy efficiency, global energy intensity worsened for the second straight year.  Against this unpromising background, events such as those at the Fukushima Daiichi Nuclear Power Plant and the turmoil in parts of the Middle East and North Africa (MENA) have cast doubts on the reliability of energy supply, while concerns about sovereign financial integrity have shifted the focus of government attention away from energy policy and limited their means of policy intervention, boding ill for agreed global climate change objectives.’

Colour image showing the One World Trade Center Project, in New York City (USA) ... which will be completed in 2013. Design by Skidmore Owings & Merrill, Architects/Planners, USA. Click to enlarge.

Colour image showing the One World Trade Center Project, in New York City (USA) ... which will be completed in 2013. Design by Skidmore Owings & Merrill, Architects/Planners, USA. Click to enlarge.

[ Not just in the case of Tall, Super-Tall and Mega-Tall Buildings … but the many, many Other Building Types in the Built Environment … are Building Designers implementing the 2005 & 2008 NIST WTC Recommendations … without waiting for Building and Fire Codes/Regulations and Standards to be properly revised and updated ??   Evidence to date suggests not ! ]

.

  3.     Separate Dilemmas for Client Organizations and Building Designers …

As discussed earlier in this Series … the Fire Safety Objectives of Building and Fire Codes/Regulations are limited to:

  • The protection of building users/occupants ;   and
  • The protection of property … BUT only insofar as that is relevant to the protection of the users/occupants ;

… because the function of Building and Fire Codes is to protect Society.  Well, that is supposed to be true !   Unfortunately, not all Codes/Regulations are adequate or up-to-date … as we have been observing here in these posts.

.

Just taking the Taipei 101 Tower as an example, I have very recently sent out three genuine, bona fide e-mail messages from our practice …

2011-12-08

Toshiba Elevator & Building Systems Corporation (TELC), Japan.

To Whom It May Concern …

Knowing that your organization was involved in the Taipei 101 Project … we have been examining your WebSite very carefully.  However, some important information was missing from there.

For our International Work … we would like to receive technical information on the Use of Elevators for Fire Evacuation in Buildings … which we understand is actually happening in the Taipei Tower, since it was completed in 2004.

The Universal Design approach must also be integrated into any New Elevators.

Can you help us ?

C.J. Walsh

[2012-01-10 … No reply yet !]

.

2011-12-12

Mr. Thomas Z. Scarangello P.E. – Chairman & CEO, Thornton Tomasetti Structural Engineers, New York.

Dear Thomas,

Knowing that your organization was involved in the structural design of the Taipei 101 Tower, which was completed in 2004 … and in the on-going design of many other iconic tall, super-tall and mega-tall buildings around the world … we have been examining your Company Brochures and WebSite very carefully.  However, some essential information is missing.

As you are certainly aware … implementation of the 2005 & 2008 National Institute of Standards & Technology (NIST) Recommendations on the Collapse of WTC Buildings 1, 2 & 7, in New York, on 11 September 2001 … is still proceeding at a snail’s pace, i.e. very slowly.  Today, many significant aspects of NIST’s Recommendations remain unimplemented.

For our International Work … we would like to understand how you have responded directly to the NIST Recommendations … and incorporated the necessary additional modifications into your current structural fire engineering designs.

Many thanks for your kind attention.  In anticipation of your prompt and detailed response …

C.J. Walsh

[2012-01-10 … No reply yet !]

.

2011-12-14

Mr. C.Y. Lee & Mr. C.P. Wang, Principal Architects – C.Y. Lee & Partners Architects/Planners, Taiwan.

Dear Sirs,

Knowing that your architectural practice designed the Taipei 101 Tower, which was completed in 2004 … and, later, was also involved in the design of other tall and super-tall buildings in Taiwan and China … we have been examining your Company WebSite very carefully.  However, some essential information is missing.

As you are probably aware … implementation of the 2005 & 2008 U.S. National Institute of Standards & Technology (NIST) Recommendations on the Collapse of WTC Buildings 1, 2 & 7, in New York City, on 11 September 2001 … is still proceeding at a snail’s pace, i.e. very slowly.  Today, many significant aspects of NIST’s Recommendations remain unimplemented.

For our International Work … we would like to understand how you have responded directly to the NIST Recommendations … and incorporated the necessary additional modifications into your current architectural designs.

Many thanks for your kind attention.  In anticipation of your prompt and detailed response …

C.J. Walsh

[2012-01-10 … No reply yet !]

.

So … how many Clients, or Client Organizations, are aware that to properly protect their interests … even, a significant part of their interests … it is vitally necessary that Project-Specific Fire Engineering Design Objectives be developed which will have a much wider scope ?   The answer is … not many !

How many Architects, Structural Engineers, and Fire Engineers fully explain this to their Clients or Client Organizations ?

And how many Clients/Client Organizations either know that they should ask, or have the balls to ask … their Architect, Structural Engineer and Fire Engineer for this explanation … and furthermore, in the case of any High-Rise Building, Iconic Building, or Building having an Important Function or an Innovative Design … ask the same individuals for some solid reassurance that they have responded directly to the 2005 & 2008 NIST WTC Recommendations … and incorporated the necessary additional modifications into your current designs … whatever current Building and Fire Codes/Regulations do or do not say ??   A big dilemma !

.

A common and very risky dilemma for Building Designers, however, arises in the situation where the Project Developer, i.e. the Client/Client Organization … is the same as the Construction Organization.  The Project Design & Construction Team – as a whole – now has very little power or authority if a conflict arises over technical aspects of the design … or over construction costs.  An even bigger dilemma !!

Colour image showing the Kingdom Tower Project, in Jeddah (Saudi Arabia) ... which will be completed in 2018. Design by Adrian Smith & Gordon Gill Architecture, USA. Click to enlarge.

Colour image showing the Kingdom Tower Project, in Jeddah (Saudi Arabia) ... which will be completed in 2018. Design by Adrian Smith & Gordon Gill Architecture, USA. Click to enlarge.

.

  4.     The Next Series of Posts – 2008 NIST WTC Recommendations

In the new year of 2012 … I will examine the later NIST Recommendations which were a response to the Fire-Induced Progressive Collapse of World Trade Center Building No.7.

Colour image showing the Signature Tower Project, in Jakarta (Indonesia) ... which will be completed in 2016. Design by Smallwood Reynolds Stewart Stewart Architects & Planners, USA. Click to enlarge.

Colour image showing the Signature Tower Project, in Jakarta (Indonesia) ... which will be completed in 2016. Design by Smallwood Reynolds Stewart Stewart Architects & Planners, USA. Click to enlarge.

.

  5.     Please … Your Comments, Views & Opinions ?!?

The future of  Conventional Fire Engineering ended on the morning of Tuesday, 11 September 2001, in New York City … an engineering discipline constrained by a long heritage deeply embedded in, and manacled to, an outdated and inflexible prescriptive approach to Codes/Regulations and Standards … an approach which is irrational, ignores the ‘real’ needs of the ‘real’ people who use and/or occupy ‘real’ buildings … and, quite frankly, no longer makes any scientific sense !!

On the other hand … having confronted the harsh realities of 9/11 and the Mumbai ‘Hive’ Attacks, and digested the 2005 & 2008 NIST WTC RecommendationsSustainable Fire Engineering … having a robust empirical basis, being ‘person-centred’, and positively promoting creativity … offers the International Fire Science and Engineering Community a confident journey forward into the future … on many diverse routes !

This IS the only appropriate response to the exciting architectural innovations and fire safety challenges of today’s Built Environment.

BUT … what do you think ?

.

.

END

Enhanced by Zemanta

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

NIST WTC Recommendations 29-30 > Improved Fire Education

Previous Posts in This Series …

2011-10-25:  NIST’s Recommendations on the 9-11 WTC Building Collapses … GROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30)

2011-11-18:  NIST WTC Recommendations 4-7 > Structural Fire EnduranceGROUP 2.  Enhanced Fire Endurance of Structures – Recommendations 4, 5, 6 & 7

2011-11-24:  NIST WTC Recommendations 8-11 > New Design of StructuresGROUP 3.  New Methods for Fire Resisting Design of Structures – Recommendations 8, 9, 10 & 11

2011-11-25:  NIST WTC Recommendations 12-15 > Improved Active ProtectionGROUP 4.  Improved Active Fire Protection – Recommendations 12, 13, 14 & 15

2011-11-30:  NIST Recommendations 16-20 > Improved People EvacuationGROUP 5.  Improved Building Evacuation – Recommendations 16, 17, 18, 19 & 20

2011-12-04:  NIST WTC Recommendations 21-24 > Improved FirefightingGROUP 6.  Improved Emergency Response – Recommendations 21, 22, 23 & 24

2011-12-07:  NIST WTC Recommendations 25-28 > Improved PracticesGROUP 7.  Improved Procedures and Practices – Recommendations 25, 26, 27 & 28

.

2011-12-08:  SOME PRELIMINARY COMMENTS …

  1.     At last, we arrive at the Group 8 Recommendations !   At this stage … my impression is that the NIST Team began to run out of steam, because these two short Recommendations barely scratch the surface with regard to the significant education and training needs of the many different design, construction, management, operation, maintenance and emergency response disciplines engaged with, and confronted by, the Built Environment … every day of every week.

After a careful reading of all 30 NIST WTC Recommendations, I hope that you have satisfied yourself/yourselves that these Recommendations must be applied to ALL Buildings … not just Tall Buildings.  At various times … Iconic Buildings, and Buildings having a Critical Function or an Innovative Design have been specifically mentioned.  And look back to Recommendation 22a … tunnels and subways also made an appearance !   The proper focus for the International Fire Science and Engineering Community must be on the Built Environment as a whole.

At All Levels in a Typical Construction Project … there are also pressing education and training needs.  It is of little use if the Project Design Documentation is 100% … and the people actually installing the passive fire protection measures or the active fire protection systems on site don’t know which end is ‘up’ !   The Project Design Documentation, in whatever format, is merely a means to an end … a fully realized and occupied Building, which is fire-safe.

Preferably … we should be discussing the mandatory Re-education and Re-training of Practitioners in the different Disciplines … [CPD (Continuing Professional/Personal Development) is not at all sufficient !] … accompanied by a very necessary Re-engineering of the Stakeholder Professional and Educational Institutions … and other related Organizations, particularly National Authorities Having Jurisdiction (AHJ’s).

Our Best Hope for Transformation … lies with the current crop of third-level undergraduate students in the different disciplines.  And, as we are discovering with the introduction of the Structural EuroCodes in the European Union, it will take perhaps 5-8 years of continuous student output to transform pre-9/11 conventional fire engineering … into a post-9/11 and post-Mumbai fire engineering which is properly ‘reliability-based’ and ‘person-centred’, i.e. Sustainable Fire Engineering !

As for the Future, and Some Conclusions to this Series … coming shortly to a computer monitor screen near you !

.

2005 NIST WTC RECOMMENDATIONS

GROUP 8.  Education and Training

The professional skills of building and fire safety professionals should be upgraded through a national education and training effort for fire protection engineers, structural engineers, and architects.  The skills of building regulatory and fire service personnel should also be upgraded to provide sufficient understanding and the necessary skills to conduct the review, inspection, and approval tasks for which they are responsible.

NIST WTC Recommendation 29.

NIST recommends that continuing education curricula be developed, and programmes be implemented for:  (1) training fire protection engineers and architects in structural engineering principles and design;  and (2) training structural engineers, architects, fire protection engineers, and code enforcement officials in modern fire protection principles and technologies, including the fire resisting design of structures;  and (3) training building regulatory and fire service personnel to upgrade their understanding and skills to conduct the review, inspection, and approval tasks for which they are responsible.  The outcome would further the integration of the disciplines in effective fire-safe design of buildings.  Affected Organizations:  AIA, SFPE, ASCE, ASME, AISC, ACI, and state licensing boards.  Model Building Codes:  Detailed criteria and requirements should be incorporated into the model building codes under the topic ‘Design Professional in Responsible Charge’.

NIST WTC Recommendation 30.

NIST recommends that academic, professional short-course, and web-based training materials in the use of computational fire dynamics and thermo-structural analysis tools be developed and delivered to strengthen the base of available technical capabilities and human resources.  Affected Organizations:  AIA, SFPE, ASCE, ASME, AISC, ACI, ICC, and NFPA.

.

.

END

Enhanced by Zemanta

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

NIST WTC Recommendations 25-28 > Improved Practices

Previous Posts in This Series …

2011-10-25:  NIST’s Recommendations on the 9-11 WTC Building Collapses … GROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30)

2011-11-18:  NIST WTC Recommendations 4-7 > Structural Fire EnduranceGROUP 2.  Enhanced Fire Endurance of Structures – Recommendations 4, 5, 6 & 7

2011-11-24:  NIST WTC Recommendations 8-11 > New Design of StructuresGROUP 3.  New Methods for Fire Resisting Design of Structures – Recommendations 8, 9, 10 & 11

2011-11-25:  NIST WTC Recommendations 12-15 > Improved Active ProtectionGROUP 4.  Improved Active Fire Protection – Recommendations 12, 13, 14 & 15

2011-11-30:  NIST Recommendations 16-20 > Improved People EvacuationGROUP 5.  Improved Building Evacuation – Recommendations 16, 17, 18, 19 & 20

2011-12-04:  NIST WTC Recommendations 21-24 > Improved FirefightingGROUP 6.  Improved Emergency Response – Recommendations 21, 22, 23 & 24

.

2011-12-07:  SOME PRELIMINARY COMMENTS …

  1.     Concerning Recommendation 25 below … yes, this Recommendation applies to the types of organizations identified in the text, but it should also be understood as applying to ALL Organizations … public or private, governmental or non-governmental or quasi-governmental, whatever, etc … ‘supported’ (see the text further down in Recommendation 25) with rigorous enforcement, in all cases, by publically appointed building control officials and/or by private, independent, competent technical control professionals.

Once more … and again and again (!) … confirmed by the sort of debacle seen at the Priory Hall Apartment Complex, in Dublin … Self-Certification / Self-Approval, i.e. ‘lite’ regulation, does not work.  For National Authorities Having Jurisdiction (AHJ’s), however, it is a cheap solution to a difficult, resource-devouring issue, i.e. protecting society and the consumer … in that order.

  2.     Concerning the Footnote to Recommendation 26 below … the choice should never be between either Fire Compartmentation or Sprinklers … or the other way around, whichever you prefer.  Neither is 100% reliable !

Fire Compartmentation

The division of a building into fire-tight compartments, by fire and smoke resisting elements of construction, in order …

  • to contain an outbreak of fire, and to facilitate effective firefighting ;
  • to prevent damage, within the building, to other adjoining compartments and/or spaces ;
  • to protect a compartment interior from external fire attack, e.g. fire spread across the building’s facade or from an adjacent building ;
  • to minimize adverse, or harmful, environmental impacts outside the building.

As developed as that definition is above, Fire Compartmentation should be regarded as just one Fire Safety Strategy / Fire Engineering Strategy … not the only strategy, and certainly not the main strategy.

Here are two reasons why not …

a)   The connection between compartment size and the ability to effectively fight a fire within a space of limited volume has been lost … so more and more, commercial pressure is being exerted on national authorities to expand the acceptable compartment sizes in buildings … which significantly increases the fire hazard ;

[ Remembering the difference between the limited Fire Safety Objectives of Building Codes/Regulations and the much broader Project-Specific Fire Engineering Objectives of Ethical Fire Engineering required to protect society and the full interests of our clients … it is easy to understand why national authorities feel that they can respond positively to such commercial pressures.]

b)   In a Sustainable Building … it is a very common design strategy to take advantage of the natural patterns of air movement in a building, for either cooling or heating purposes, depending on local climate conditions.  So there is simply no compartmentation, as understood in conventional fire engineering terms … and this throws up a fundamental conflict between the two.  To be discussed in another post !

  3.     Concerning the 2nd Footnote to Recommendation 28 below … in the very same New York City … at 09.40 hrs on a Saturday morning, 28 July 1945 … lost in fog, a B-25 Bomber slammed head-on into the 79th Floor of the Empire State Building … and caused enormous damage.  That building is still standing today … and surprise, surprise … there was aviation fuel in the B-25 !

In a similar vein … Fire-Induced Progressive Collapse was not observed for the first time, in New York, on 11 September 2001 !

.

2005 NIST WTC RECOMMENDATIONS

GROUP 7.  Improved Procedures and Practices

The procedures and practices used in the design, construction, maintenance, and operation of buildings should be improved to include encouraging code compliance by non-governmental and quasi-governmental entities, adoption and application of egress and sprinkler requirements in codes for existing buildings, and retention and availability of building documents over the life of a building.

NIST WTC Recommendation 25.

Non-governmental and quasi-governmental entities that own or lease buildings and are not subject to building and fire safety code requirements of any governmental jurisdiction are nevertheless concerned about the safety of building occupants and responding emergency personnel.  NIST recommends that such entities be encouraged to provide a level of safety that equals or exceeds the level of safety that would be provided by strict compliance with the code requirements of an appropriate governmental jurisdiction.  NIST further recommends that as-designed and as-built safety be certified by a qualified third party, independent of the building owner(s).  The process should not use self-approval for code enforcement in areas including interpretation of code provisions, design approval, product acceptance, certification of the final construction, and post-occupancy inspections over the life of the buildings.*

[ * F-46  The long-standing stated policy of the Port Authority of New York & New Jersey (PANYNJ) was to meet and, where appropriate, exceed the requirements of local building and fire codes, and it entered into agreements with the New York City Department of Buildings and the Fire Department of the City of New York in accordance with that policy.  Although the PANYNJ sought review and concurrence from New York City in the areas listed in the Recommendation, the PANYNJ was not required to yield, and appears not to have yielded, approval authority to New York City.  The PANYNJ was created as an interstate entity, a ‘body corporate and politic’, under its charter, pursuant to Article 1, Section 10 of the United States Constitution permitting compacts between states.  Further, there are many other similar non-governmental and quasi-governmental entities in the U.S.  A comprehensive review of documents conducted as part of this Investigation suggests that the WTC towers generally were designed and maintained consistent with the requirements of the 1968 New York City Building Code.  Areas of concern included fireproofing of the WTC floor system, height of tenant separation walls, and egress requirements for the assembly use spaces of ‘Windows of the World’ in WTC Tower 1 and the ‘Top of the World’ Observation Deck in WTC Tower 2.  These areas of concern did not play a significant role in determining the outcomes related to the events on 11th September 2001.]

NIST WTC Recommendation 26.

NIST recommends that state and local jurisdictions adopt and aggressively enforce available provisions in building codes to ensure that egress and sprinkler requirements are met by existing buildings.*  Further, occupancy requirements should be modified where needed (such as when there are assembly use spaces within an office building) to meet the requirements in model building codes.  Provisions related to egress and sprinkler requirements in existing buildings are available in such codes as the International Existing Building Code (IEBC), International Fire Code, NFPA 1, NFPA 101, and ASME A 17.3.  For example, the IEBC defines three levels of building alteration (removal and replacement or covering of existing materials and equipment, reconfiguration of space or system or installation of new equipment, and extending the work area in excess of 50% of the aggregate area of the building).  At the lowest level, there are no upgrade implications for sprinklers and the egress system.  At the next level, sprinklers are required in work areas serving greater than 30 people if certain other conditions related to building height and use such as shared exits also are met.  There are numerous requirements for means of egress, including number of exits, specification of doorsets, dead-end corridors and travel distances, lighting, signage, and handrails.  At the highest level, the sprinkler and egress requirements are identical to the second level without the minimum 30-person restriction and the other conditions related to building height and use.  The Life Safety Code (NFPA 101) applies retroactively to all buildings, independent of whether any work is currently being done on the building, and ASME A 17.3 applies retroactively to all elevators as a minimum set of requirements.

[ * F-47  The WTC towers were unsprinklered when built.  It took nearly 28 years after passage of New York City Local Law 5 in 1973, which required either compartmentation or sprinklering, for the buildings to be fully sprinklered (the Port Authority chose not to use the compartmentation option in Local Law 5).  This was about 13 years more than the 15-year period for full compliance with Local Law 5 that was set by Local Law 84 of 1979.]

NIST WTC Recommendation 27.

NIST recommends that building codes incorporate a provision that requires building owners to retain documents, including supporting calculations and test data, related to building design, construction, maintenance, and modifications over the entire life of the building.*  Means should be developed for off-site storage and maintenance of the documents.  In addition, NIST recommends that relevant information be made available in suitably designed hard copy or electronic formats for use by emergency responders.  Such information should be easily accessible by responders during emergencies.  Model Building Codes:  Model building codes should incorporate this Recommendation.  State and local jurisdictions should adopt and enforce these requirements.

[ * F-48  The availability of inexpensive electronic storage media and tools for creating large searchable databases makes this feasible.]

NIST WTC Recommendation 28.

NIST recommends that the role of the ‘Design Professional in Responsible Charge’* be clarified to ensure that:  (1) all appropriate design professionals (including, e.g. the fire protection engineer) are part of the design team providing the highest standard of care when designing buildings employing innovative or unusual fire safety systems;**  and (2) all appropriate design professionals (including, e.g. the structural engineer and the fire protection engineer) are part of the design team providing the highest standard of care when designing the structure to resist fires, in buildings that employ innovative or unusual structural and fire safety systems.  Affected Standards:  AIA Practice Guidelines.  Model Building Codes:  The International Building Code (IBC), which already defines ‘Design Professional in Responsible Charge’, should be clarified to address this Recommendation.  NFPA 5000 should incorporate the ‘Design Professional in Responsible Charge’ concept, and address this Recommendation.

[ * F-49  In projects involving a design team, the ‘Design Professional in Responsible Charge’ – usually the lead architect – ensures that the team members use consistent design data and assumptions, co-ordinates overlapping specifications, and serves as the liaison between the enforcement and reviewing officials and the owner.  This term is defined in the International Building Code (IBC) and in the International Code Council’s Performance Code for Buildings and Facilities (where it is the Principal Design Professional).]

[ ** F-50  If the fire safety concepts in tall buildings had been sufficiently mature in the 1960’s, it is possible that the risks associated with jet-fuel ignited multi-floor fires might have been recognized and taken into account when the impact of a Boeing 707 aircraft was considered by the structural engineer during the design of the WTC towers.]

.

.

END

Enhanced by Zemanta

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

NIST WTC Recommendations 21-24 > Improved Firefighting

Previous Posts in This Series …

2011-10-25:  NIST’s Recommendations on the 9-11 WTC Building Collapses … GROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30)

2011-11-18:  NIST WTC Recommendations 4-7 > Structural Fire EnduranceGROUP 2.  Enhanced Fire Endurance of Structures – Recommendations 4, 5, 6 & 7

2011-11-24:  NIST WTC Recommendations 8-11 > New Design of StructuresGROUP 3.  New Methods for Fire Resisting Design of Structures – Recommendations 8, 9, 10 & 11

2011-11-25:  NIST WTC Recommendations 12-15 > Improved Active ProtectionGROUP 4.  Improved Active Fire Protection – Recommendations 12, 13, 14 & 15

2011-11-30:  NIST Recommendations 16-20 > Improved People EvacuationGROUP 5.  Improved Building Evacuation – Recommendations 16, 17, 18, 19 & 20

.

2011-12-04:  SOME PRELIMINARY COMMENTS …

  1.     Such is the pervasively high level of both direct and indirect fire losses, not all of which have yet been identified … that a force of committed firefighters, having sufficient numbers and properly trained and equipped, is a valuable social asset in any community … and one not to be weakened or diluted easily.

  2.     Lack of discipline among firefighters was an issue during the day of 9-11 (11th September 2011) in New York …

In real life or death situations, however, discipline is essential … but competent and efficient command, control and co-ordination … facilitated by reliable systems of communication (human and electronic) … are critical.

And accurate, real time information about what is happening at a building fire incident of whatever scale … i.e. situation awareness … is a tool which propels forward and encourages the effective functioning of both the firefighter and the user/occupant evacuating the building.

  3.     A serious gap, internationally … a deep cavern … in the awareness, training and education of firefighters at all levels … is the issue of ‘disability’ and the varying range of abilities in a typical building user/occupant profile.

It is not fully appreciated by firefighters that certain people may die if placed in a standard fireman’s lift position … or, if shouted and screamed at, many people may have no understanding whatever of the firefighter’s intended meaning … or that, in order for everyone to reach a place of safety, it is necessary for firefighters to ensure that safe, accessible routes from the building (i.e. clear of all obstacles, e.g. fire hose lines) are prepared for, thoroughly, in advance of any fire incident … and actually provided should one occur.

Panic attacks during an emergency do exist !   Standard movement times for people evacuating do not exist !!   And … firefighters may themselves become impaired during a building fire incident !!!

  4.     As for building designers … where do I even start ??   Much could, and should, be done in the design and initial construction of a building to assure firefighter safety.  But … where does any requirement to consider this issue appear in national building codes/regulations ??

I have already discussed this matter in relation to European Union (EU) Regulation 305/2011 on Construction Products, where such a requirement is contained in Basic Requirement for Construction Works 2: ‘Safety in Case of Fire’ (Annex I).

.

2005 NIST WTC RECOMMENDATIONS

GROUP 6.  Improved Emergency Response

Technologies and procedures for emergency response should be improved to enable better access to buildings, response operations, emergency communications, and command and control in large-scale emergencies.

NIST WTC Recommendation 21.

NIST recommends the installation of fire-protected and structurally hardened elevators to improve emergency response activities in tall buildings by providing timely emergency access to responders and allowing evacuation of mobility-impaired building occupants.  Such elevators should be installed for exclusive use by emergency responders during emergencies.*  In tall buildings, consideration also should be given to installing such elevators for use by all occupants.  NIST has found that the physiological impacts on emergency responders of climbing numerous (e.g. 20 or more) storeys makes it difficult to conduct effective and timely firefighting and rescue operations in building emergencies without functioning elevators.  The use of elevators for these purposes will require additional operating procedures and protocols, as well as a requirement for release of elevator door restrictors by emergency response personnel.

[ * F-44  The access time for emergency responders, in tall building emergencies where elevators are not functioning and only stairways can be used, averages between 1 minute and 2 minutes per floor, which, for example, corresponds to between 1½ and 2 hours (depending on the amount of gear and equipment carried) to reach the 60th floor of a tall building.  Further, the physiological impact on the emergency responders of climbing more than 10 to 12 floors in a tall building makes it difficult for them to immediately begin aggressive firefighting and rescue operations.]

Affected Standards:  ASME A 17, ANSI 117.1, NFPA 70, NFPA 101, NFPA 1221, NFPA 1500, NFPA 1561, NFPA 1620, and NFPA 1710.  Model Building and Fire Codes:  The standards should be adopted in model building and fire codes by mandatory reference to, or incorporation of, the latest edition of the standard.

NIST WTC Recommendation 22.

NIST recommends the installation, inspection, and testing of emergency communications systems, radio communications, and associated operating protocols to ensure that the systems and protocols:  (1) are effective for large-scale emergencies in buildings with challenging radio frequency propagation environments;  and (2) can be used to identify, locate, and track emergency responders within indoor building environments and in the field.  The federal government should co-ordinate its efforts that address this need within the framework provided by the SAFECOM programme of the Department of Homeland Security.

a.     Rigorous procedures, including pre-emergency inspection and testing, should be developed and implemented for ensuring the operation of emergency communications systems and radio communications in tall buildings and other large structures (including tunnels and subways), or at locations where communications are difficult.

b.     Performance requirements should be developed for emergency communications systems and radio communications that are used within buildings or in built-up urban environments, including standards for design, testing, certification, maintenance, and inspection of such systems.

c.     An interoperable architecture for emergency communication networks – and associated operating protocols – should be developed for unit operations within and across agencies in large-scale emergencies.  The overall network architecture should cover local networking at incident sites, dispatching, and area-wide networks, considering: (a) the scale of needed communications in terms of the number of emergency responders using the system in a large-scale emergency and the organizational hierarchy; and (b) challenges associated with radio frequency propagation, especially in buildings; (c) interoperability with existing legacy emergency communications systems (i.e. between conventional two-way systems and newer wireless network systems); and (d) the need to identify, locate, and track emergency responders at an incident site.

Affected Standards:  FCC, SAFECOM, NFPA Standards on Electronic Safety Equipment, NFPA 70, NFPA 297, and NFPA 1221.  Model Building Codes:  The standards should be adopted in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.

NIST WTC Recommendation 23.

NIST recommends the establishment and implementation of detailed procedures and methods for gathering, processing, and delivering critical information through integration of relevant voice, video, graphical, and written data to enhance the situational awareness of all emergency responders.  An information intelligence sector* should be established to co-ordinate the effort for each incident.

[ * F-45  A group of individuals that is knowledgeable, experienced, and specifically trained in gathering, processing, and delivering information critical for emergency response operations, and is ready for activation in large and/or dangerous events.]

Affected Standards:  National Incident Management System (NIMS), NRP, SAFECOM, FCC, NFPA Standards on Electronic Safety Equipment, NFPA 1221, NFPA 1500, NFPA 1561, NFPA 1620, and NFPA 1710.  Model Building Codes:  The standards should be adopted in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.

NIST WTC Recommendation 24.

NIST recommends the establishment and implementation of codes and protocols for ensuring effective and uninterrupted operation of the command and control system for large-scale building emergencies.

a.     State, local, and federal jurisdictions should implement the National Incident Management System (NIMS).  The jurisdictions should work with the Department of Homeland Security to review, test, evaluate, and implement an effective unified command and control system.  NIMS addresses interagency co-ordination and establishes a response matrix – assigning lead agency responsibilities for different types of emergencies, and functions.  At a minimum, each supporting agency should assign an individual to provide co-ordination with the lead agency at each incident command post.

b.     State, local, and federal emergency operations centres (EOC’s) should be located, designed, built, and operated with security and operational integrity as a key consideration.

c.     Command posts should be established outside the potential collapse footprint of any building which shows evidence of large multi-floor fires or has serious structural damage.  A continuous assessment of building stability and safety should be made in such emergencies to guide ongoing operations and enhance emergency responder safety.  The information necessary to make these assessments should be made available to those assigned responsibility (see related Recommendations 15 and 23).

d.     An effective command system should be established and operating before a large number of emergency responders and apparatus are dispatched and deployed.  Through training and drills, emergency responders and ambulances should be required to await dispatch requests from the incident command system and not to self-dispatch in large-scale emergencies.

e.     Actions should be taken via training and drills to ensure a co-ordinated and effective emergency response at all levels of the incident command chain by requiring all emergency responders that are given an assignment to immediately adopt and execute the assignment objectives.

f.     Command post information and incident operations data should be managed and broadcast to command and control centres at remote locations so that information is secure and accessible by all personnel needing the information.  Methods should be developed and implemented so that any information that is available at an interior information centre is transmitted to an emergency responder vehicle or command post outside the building.

Affected Standards:  National Incident Management System (NIMS), NRP, SAFECOM, FCC, NFPA Standards on Electronic Safety Equipment, NFPA 1221, NFPA 1500, NFPA 1561, NFPA 1620, and NFPA 1710.  Model Building Codes:  The standards should be adopted in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.

.

.

END

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Search

 

December 2011
S M T W T F S
« Nov   Jan »
 123
45678910
11121314151617
18192021222324
25262728293031

Links