Building Designers

BREXIT & EU Construction Products Regulation 305/2011 ~ Woeful Implications for Britain’s Fire Industry

2020-09-08:  Ignoring Britain’s silly sabre-rattling, toothless threats and boorish blackmail attempts reported in the Media during this past weekend, yesterday and today … the actual state of play in the tortuous Brexit Negotiations can best be judged from the following sources …

Michel Barnier’s Presentation to the Institute for International and European Affairs (IIEA), on 2 September 2020 … View it Here on YouTube

Britain’s National Audit Office Report: ‘Learning for Government from EU Exit Preparations’, dated 4 September 2020   (Download PDF File, 197 Kb)

.

Map of Europe, in colour, showing the current extent of the European Union.  Points to Note:  a) Europe, as a continent, extends as far as the Ural Mountains in Russia;  b) From 1 January 2021, after an implementation period of one year, Great Britain will be entirely outside the EU and the Single Market;  c) The EU is not a Christian organization and as soon the political classes in certain countries (e.g. France and The Netherlands) get over their hysterical hatreds, Turkey will enter the EU as a full Member State;  d) furthermore and eventually, an Independent Scotland will re-join the EU.  Click map to enlarge.

This is the European Union (EU), a Single Market of approximately 450 Million consumers.  The EU operates under the freedoms and protections of Codified / Written Law, i.e. EU Treaties ratified by all of the EU Member States, EU Secondary Legislation (Regulations and Directives), and EU Administrative Provisions.

.

A suite of EU Regulations and Directives covers Industrial Products.  While there is some flexibility with regard to how Directives are implemented at national level in the Member States, no such flexibility exists with Regulations.  Construction Products can only be placed on the EU Single Market if they can be shown to comply with the requirements of the EU’s Construction Products Regulation (CPR) Framework, or in other words, be shown to be ‘fit for their intended use’ in the European Union …

REGULATION (EU) No 305/2011 of the European Parliament and of the Council, dated 9 March 2011, laying down harmonised conditions for the marketing of construction products and repealing Council Directive 89/106/EEC   (Download PDF File, 998 Kb)

.

EU Regulation 305/2011.  Article 13(2) Before placing a Construction Product on the market, Importers shall ensure that the assessment and the verification of constancy of performance has been carried out by the Manufacturer.  They shall ensure that the Manufacturer has drawn up the Technical Documentation referred to in the second sub-paragraph of Article 11(1) and the Declaration of Performance in accordance with Articles 4 and 6.  They shall also ensure that the Product, where required, bears the CE Marking, that the Product is accompanied by the required documents and that the Manufacturer has complied with the requirements set out in Article 11(4) and (5).

.

BREXIT ~ IMPLICATIONS FOR THE BRITISH FIRE INDUSTRY

Trade ‘No Deal’ or ‘Minimal Deal’ … from 1 January 2021, Great Britain will be completely outside the European Single Market, and the EU’s Construction Products Regulation Framework.  The designation ‘Notified Body’ under that Framework will fall away from British Organizations.  Construction Products/Systems manufactured in, or supplied from, Britain will then have to undergo an entirely new EU Testing and Approvals Programme in order to access the European Single Market.  Fire Safety related Construction Products will have to be tested, and assessed or appraised, against all 7 Basic Requirements for Buildings together, during the same period of time (see Annex I, EU Regulation 305/2011) …

      1.  Mechanical Resistance and Stability
      2.  Safety in Case of Fire
      3.  Hygiene, Health and the Environment
      4.  Safety and Accessibility in Use
      5.  Protection against Noise
      6.  Energy Economy and Heat Retention
      7.  Sustainable Use of Natural Resources

… a process which will be very interesting to observe, since the Fire Industry (particularly England’s Fire Establishment, AHJ’s, etc) dislikes, with intensity, the whole idea of ‘environmental impact’ … the concept of ‘sustainable development’ is hardly understood … and no consideration is given to the reasonable fire safety and accessibility needs of ‘vulnerable building users’ (including people with activity limitations, refugees, migrants, etc).

The tragic 2017 Grenfell Tower Fire, and its sad aftermath, have demonstrated how dysfunctional, and rotten to the core, is the whole national system of Building Fire Safety in England.  More than 3 years later … on the evidence to date of an ongoing, incompetent Inquiry and a series of shoddy responses from Government … will survivors and the victims’ families ever receive Justice, and find Peace ?   cf. The 1981 Stardust Discotheque Fire in Dublin.  Survivors and victims’ families are still waiting for the truth to be revealed.

In parallel, mutual recognition of British Professional Building Designers, e.g. Architects, Structural Engineers, Fire Engineers, etc., within the European Union will cease.

In parallel, British Fire Research involvement in EU Research Networks will also cease … unless a heavy price is paid to be involved as a 3rd Country.  British Institutions should forget any notions they might have about Network Leadership.

In parallel, Information and Data Flows between Britain and the EU will be disrupted or cease altogether … unless Britain complies fully with the requirements of EU General Data Protection Regulation (GDPR) 2016/679.  As a vassal state of the USA, this compliance may prove difficult for Britain !

.

EU Fire Safety Related Product/System Manufacturers ~ A Word of Caution !

Many EU Construction Product/System Manufacturers continue to use the services provided by British Fire Test Laboratories and/or Fire Consultancy Organizations located in Great Britain … some of which have already established EU-based dummy companies and letterheads.  These British organizations must be avoided altogether.  For example, the practice of fire testing in England and later adding a title page of a Full Test Report with an EU location address is entirely unacceptable !

.

.

END

#Twitter … @walshcj69 …

#Sustainability #Brexit #EU #England #MichelBarnier #GB #PerfidiousAlbion #ConstructionProducts #FireSafety4ALL #VulnerableBuildingUsers #EnvironmentalImpact #SustainableDevelopment #BrexitTrainCrash #BorisCummings #BuildingDesigners #FireEngineers #Architects #Turkey #Scotland #EuropeanUnion #NationalAuditOffice #NobodyLeftBehind #TechnicalControl #FireCodes #SFE #SIA #SustainableFireEngineering #Resilience #Reliability #GrenfellTowerFire #StardustDiscoFire #Dublin #CEmark #FireResearch #GDPR #IIEA #CPRframework #MutualRecognition #Russia #USA #CodifiedLaw #EUtreaties #PwAL

Grenfell Inquiry Recommendations (3) – Fire Alarms !!

Previous Posts In This New Series …

2019-10-31:  Grenfell Tower Fire Inquiry’s Phase 1 Report – Information

2019-11-11:  Grenfell Inquiry Recommendations (1) – Vulnerable People ?

2019-12-21:  Grenfell Inquiry Recommendations (2) – Fire Emergency Plans !

..

2020-03-23:  The Grenfell Fire Inquiry’s Phase 1 Recommendations (Part V in Volume 4 of the Phase 1 Report), were published on 30 October 2019.  The initial issues covered in those Recommendations are fragmentary, lack depth and coherence … and in the case of Fire Alarms, with just one indirect reference to them in Paragraph #33.22 … they are in serious error …

.

Colour image showing the Volume 4 Cover Page of the Grenfell Tower Inquiry Phase 1 Report.  The Phase 1 Recommendations are contained in Chapter #33, on Pages 771-780.  Click to enlarge.

[ Paragraph #33.22 ]  There were no plans in place for evacuating Grenfell Tower should the need arise.  I therefore recommend:

d. that all high-rise residential buildings (both those already in existence and those built in the future) be equipped with facilities for use by the fire and rescue services enabling them to send an evacuation signal to the whole or a selected part of the building by means of sounders or similar devices ;

.

FUNDAMENTALS OF A SOLUTION

1.  A Fire Alarm (more precisely from here on, a Fire Detection & Warning System) is a critical safety feature in all buildings … ALL BUILDINGS … from the smallest and most simple, to the biggest and most complex … no exceptions !!

In order to survive in a fire emergency, Vulnerable Building Users need more time to react, and evacuate, than other occupants/users.  The valuable time provided by early, accurate and precise detection is the only way to effectively facilitate this.  The ‘Required Time’ to prepare for evacuation depends on many factors, e.g. building complexity, familiarity of users with evacuation routes, range and severity of user activity limitations, etc.

It follows, therefore, that if building occupants/users have to wait 15, or 20, or 30 minutes before firefighters arrive at the fire scene (Full Response Time*) and ‘an evacuation signal to the whole or a selected part of the building’ is only then sent by those firefighters … all of that valuable evacuation time for vulnerable building users has been lost.  This is ridiculous, and makes no sense whatsoever.  This Recommendation must be rejected out of hand, and ignored !

[ *Full Response Time: The time interval from the receipt of an emergency communication at the primary public safety answering point (#PSAP) to when emergency response units are initiating action or intervening to control a fire incident. ]

.

Colour photograph showing the Single, Narrow Staircase (1.040 metres in width between a handrail on one side of the staircase and a bare wall on the other side) in London’s Grenfell Residential Tower.  This staircase, which was inadequately protected from fire, heat and smoke, was not wide enough to facilitate the ‘contraflow’ circulation of firefighters entering, while occupants evacuated at the same time.  Without a Fire Alarm in the building, occupants could not have known that a serious Fire Emergency was in progress … especially Vulnerable Building Users accommodated high up in the Tower … and they remained in place (‘stayed put’).  Once firefighters arrived at the scene, occupant evacuation using this staircase became impossible or extremely difficult.  Click photograph to enlarge.

Important Note:  In Chapter #34: ‘Looking Ahead to Phase 2’ of Moore-Bick’s Phase 1 Report, Volume 4 … Paragraph #34.14 states …

A question was raised about the width of the stairs, given that they provided the sole means of access to the upper floors of the tower for firefighters as well as the sole means of escape for the occupants.  However, the stairs appear to have complied with requirements of the legislation in force at the time of their construction and the expert evidence supports the conclusion that they had sufficient capacity to enable all the occupants of the building to escape within a reasonable time.  This aspect of the building will not, therefore, be the subject of further investigation in Phase 2.’

Astounding !  Absurd !!  FUBAR !!!

.

All Fire Emergency Warning Systems must be designed to accommodate People with Hearing Impairments.  Audible and visual warning devices must be provided together, as a single combined unit.  This is particularly important in noisy and isolated building spaces, e.g. bathrooms, small meeting rooms.  Vibrating devices, such as pagers or mobile phones, can be integrated into a building’s fire emergency warning system in order to provide any individual with a tactile emergency alert.

Colour photograph showing a single combined visual-audible Fire Emergency Warning Device.  Click to enlarge.

Important Note:  Audible sounders, on their own, are never a sufficient Fire Emergency Warning !

.

2.  The Purpose of a Fire Emergency Warning System is to provoke calm, efficient and adaptable evacuation movement by ALL building users/occupants at the earliest possible stage in a fire incident, without causing user confusion, disorientation or panic. In all building types, therefore, a reliable, informative and accessible fire emergency warning system must be installed, and such a system must always have a fire protected electrical supply.

Colour image showing the movement of building occupants and users.  The purpose of a Fire Emergency Warning System is to provoke calm, efficient and adaptable evacuation movement by ALL building occupants at the earliest possible stage in a fire incident, without causing user confusion, disorientation or panic.  During a Fire Emergency, STANDARD MOVEMENT TIMES DO NOT EXIST.  Click image to enlarge.

.

3.  To provoke a Calm Response from Building Users … the output from Fire Emergency Warning Devices, e.g. light, sound and messages, must be adapted to the local context of people and building surroundings.

Fire Emergency Audible Warnings … A sufficient number of low-output audible sounders, i.e. between 60-80 dB, must be specified for effectiveness.  Small numbers of sounders with high output (in order to reduce costs) should never be specified, as this can lead to confusion, disorientation and panic attacks among some building users/occupants.  The output of sounders must be adapted to suit interior surroundings, e.g. in small spaces with hard surfaces a lower sound output will be adequate.

Colour image.  The output from Fire Emergency Audible Sounders must be between 60-80 dB.  Click image to enlarge.

Important Note:  When they are asleep, hearing-able children (around ten years of age and under) … and hearing-able older people (around 65 years of age and over) are more difficult to wake and rouse sufficiently for evacuation when alerted by an audible signal alone.

Fire Emergency Visual Warnings … Light strobes/beacons must be clearly visible.  To reinforce #1 above … light strobes/beacons must be placed in wash rooms and in other locations within buildings where people may be alone ; they must also be placed in noisy environments.

A sufficient number of low-output strobes/beacons must be specified for effectiveness.  Small numbers of strobes/beacons with high output (in order to reduce costs) should never be specified, as these produce a glare which may cause confusion, disorientation and panic attacks among some building users/occupants.  The light output of strobes/beacons must be adapted to suit interior surroundings, e.g. in dark rooms.

For light strobes/beacons, a slow rate of flash is important, i.e. no faster than once every two or three seconds, in order to encourage a calm response from building users/occupants and to avoid photosensitivity seizures.  Most importantly, the flash of one strobe/beacon must be synchronized with the flashes of all other light strobes/beacons in view.

.

Colour video clip (.gif).  The output from Fire Emergency Visual Strobes / Beacons must be no faster than one flash every two or three seconds.  The flash rate shown above is too fast !   Click to run video clip.

Fire Emergency Voice Message Warnings … Are essential to improve Warning Credibility.  In other words, building users are far less likely to sit around wondering, waiting to see whether this is a ‘real’ fire emergency, a false alarm, a practice evacuation, or an electrical error.  Verbal or voice messages must be short and contain appropriate warning information which is easily assimilated.  The speaker should be distinct and easy to understand.  Live messaging during a fire emergency is preferred over pre-recorded, standard messages.  In today’s multi-cultural social environment, messages must be transmitted in at least two to three different languages, as appropriate.

Fire Emergency Directional Warnings … Combination sounder, visible strobe/beacon, and voice messaging Fire Emergency Warning Devices are now a mainstream technology, are readily available, and are being specified in new and existing buildings.

.

Colour image showing a combination Fire Emergency Directional Audible Sounder, with Voice Messaging capability.  Click image to enlarge.

Audible directional signalling must be installed when dealing with difficult building configurations, e.g. in large open office layouts/spaces with minimal signage … where building users/occupants are unfamiliar with their surroundings in modern shopping centres/malls and other complex building types … or visibility of high-level signage may be reduced because of smoke logging.

Directional sounders, which guide building users during a Fire Evacuation towards Exits, Areas of Rescue Assistance and Lift/Elevator Lobbies, must be positioned at carefully chosen, suitable locations.  Once reached, a directional sounder must also have a voice messaging capability in order to inform people about the next phase of evacuation.

4.  Fire Emergency Warning Systems must be Accessible (for People with Activity Limitations), i.e. capable of transmitting a warning in many formats in order to ensure that all users/occupants perceive and act upon the warning in a calm manner and, thereafter, that effective evacuation movement commences without delay. Warning Credibility improves in direct relation to the type and number of different warning formats.

.

As well as indirectly referring to Fire Detection and Warning Systems, Paragraph #33.22 in Moore-Bick’s Phase 1 Recommendations has some other things to say about Evacuation.  So this is an opportune moment to discuss some practical and human issues concerning Fire Emergency Evacuation … and, straight away, to deal with an unexpected consequence arising from the current CoronaVirus/CoVID-19 Emergency …

CoronaVIRUS / CoVID-19 PANDEMIC

There have been widely reported instances, in many countries, of panic buying in shops because of the 2020 CoronaVirus/CoVID-19 Emergency … but the photograph below illustrates an example of a panic reaction by building management.  This appears to be a crime scene … the yellow and black tape is so dramatic.  In a real Fire Emergency, many building users/occupants will be reluctant to use this final fire exit ; they will not have the time to read the small print on a notice ; they will attempt to re-trace their path of evacuation and find another exit.

Colour photographs showing how, as a panic reaction to the 2020 CoronaVirus/CoVID-19 Emergency, a Final Fire Exit has been blocked off from normal, everyday use.  Click to enlarge.

This panic reaction by building management IS a serious impediment to Fire Evacuation !

Whatever the Motives of Building Management …

  • in countries which have Fire Codes / Regulations, this action is illegal ;   and
  • in these days, when a wide range of ‘smart’ technologies is readily available … this action is inexcusable.

.

SOME PRACTICAL FIRE EVACUATION ISSUES

A Skill is the ability of a person, resulting from competent training and regular practice, to carry out complex, well-organized patterns of behaviour efficiently and adaptively, in order to achieve some end or goal.  All building occupants/users must be skilled for evacuation to an external ‘place of safety’, which is at a safe and remote distance from the fire building.  Practice fire evacuations must be carried out sufficiently often to equip building users, particularly vulnerable users, with this skill, i.e. at least once every six months ; in complex building types, practices should be carried out more often.  Prior notification to occupants/users, and regular scheduling of practice evacuations should be avoided.

Familiarity with Fire Evacuation Routes will be fostered and greatly improved by means of normal, everyday use by occupants/users.  This is an important task for pro-active Building Management in existing buildings … and an important aspect of new building design for Architects and Fire Engineers.

While the transmission of fire emergency warnings in many formats will increase Warning Credibility, close observation of past tragic ‘real’ fire events, e.g. the WTC 9-11 Attacks in New York City, shows that initiation of evacuation and the actual process of evacuation itself can be problematic.  An interesting, easily assimilated and user-targeted skills programme of training should incorporate practical solutions to deal with the following typical problems:

  1. Fire Emergency Preparedness: Irregular attendance of building occupants/users at fire prevention and safety training sessions, and participation in practice fire evacuations. Users not being familiar with a building’s fire emergency management plan and not knowing who is in charge … not using a building’s fire evacuation route(s), particularly staircases, during practices … or having no information about where to assemble after evacuating … or, once at a place of safety, not having any head count or identification process ;
  2. Delaying Activities Inside The Fire Building: Once building occupants/users decide to evacuate, but before moving to evacuate, they gather personal effects … seek out friends/co-workers … search for others … make phone calls/send tweets … finish tasks/turn off computers … wait around for instructions … change shoes … and try to obtain permission to leave ;
  3. Delaying Activities Outside The Fire Building: Once outside the building’s final fire exit, but before moving directly to a place of safety, building occupants/users stop to see what is happening … look for friends/co-workers … look for a phone … do not know where to go … or, within the ‘danger zone’ of the fire building, stop to receive medical attention.

It may seem obvious that Fire Evacuation Routes must also be Accessible (for People with Activity Limitations), which also makes routes much safer for every other building user … and sufficiently wide to accommodate Contraflow (emergency access by firefighters or rescue teams into a building and towards a real fire, while building users are still moving away from the fire and evacuating the building) … a harsh lesson learned from the 2001 WTC 9-11 Attacks and the 2017 Grenfell Tower Fire. Since they are new, strange and unusual for many building designers, and most fire engineers … these aspects of building performance are overlooked in nearly every building.

Practice Evacuations should include exercise of the buddy system ; fire safety fittings, e.g. portable fire extinguishers ; and fire evacuation devices intended for use by people with activity limitations which will require more intensive training.

.

Colour image showing a range of personal Facilitation / Mobility Aids.  People with Activity Limitations must be allowed, and positively encouraged, to keep these Aids during practice and real fire evacuations.  Prior meaningful consultation (see below) is essential.  Click to enlarge.

Important Note:  During fire emergencies, People with Activity Limitations must be permitted to keep possession of their own personal Facilitation / Mobility Aids.

.

SOME HUMAN FIRE EVACUATION ISSUES

The actual people who use and occupy buildings are individuals.  They are different from each other, and they each have a different range of abilities (in relation to self-protection, independent evacuation to an external place of safety remote from a fire building, and active participation in a building’s fire emergency management plan), behaviour and manner of perceiving their surroundings.  Two apparently similar people will also show variations in how they react to and behave in any specific situation, particularly a fire emergency.

Ability / Disability is a Continuum – a gentle gradient on which every person functions and acts at different levels due to personal and environmental, i.e. external, factors.

In situations of severe stress, e.g. during a fire emergency in a building, where there is a lack of preparedness for such an event, a lack of familiarity with evacuation routes, lack of reliable evacuation information, lack of competent leadership and clear direction, and the presence of smoke, user/occupant confusion, disorientation and panic will occur.  Standard evacuation movement times will also be non-existent.  In addition, people with activity limitations must then deal with many physical barriers which routinely impede their evacuation from buildings, e.g. fire resisting doorsets which are difficult to open, steps along evacuation routes and at final fire exits.

In the case of people with a mental or cognitive impairment, there is a particular need to encourage, foster and regularly practice the adaptive thinking which will be necessary during evacuation a real fire incident.

People with respiratory health conditions will not be able to enter or pass through smoke.  People with visual impairments will require continuous, linked tactile and/or voice information during the whole process of fire evacuation.  People with psychological impairments, i.e. vertigo and agoraphobia, will be unable to use fire evacuation staircases with glass walls in high-rise buildings.  Because of the stigma still associated with disability in many countries, some users/occupants who will need assistance during a fire emergency will be reluctant to self-identify beforehand.  Other people may not even be able to recognize that they have an activity limitation or a health condition.

Meaningful Consultation with a person known to occupy or use a building, for the purposes of receiving his/her active co-operation and informed consent (involving a personal representative, if necessary), is an essential component of adequate pre-planning and preparation for a fire emergency.

Building Designers, Fire Engineers and Firefighters should be aware of the following human conditions:

Agoraphobia: A fear of open spaces.

Commentary: Agoraphobia is one of the most commonly cited phobic disorders of people seeking psychiatric or psychological treatment. It has a variety of manifestations, e.g. a deep fear of leaving a building, or of being caught alone in some public place. When placed in threatening situations, agoraphobics may experience a panic attack.

Anosognosia: A neurological disorder marked by the inability of a person to recognize that he/she has an activity limitation or a health condition.

Dementia: Any degenerative loss of intellectual capacity, to the extent that normal and occupational activities can no longer be carried out.

Panic: A sudden overwhelming feeling of anxiety, which may be of momentary or prolonged duration.

Panic Attack: A momentary period of intense fear or discomfort, accompanied by various symptoms which may include shortness of breath, dizziness, palpitations, trembling, sweating, nausea, and often a fear by a person that he/she is going mad.

.

.

END

#SFE #GrenfellTowerFire #FireSafety4ALL #NobodyLeftBehind #VulnerableBuildingUsers #PwAL #PwD #NeverStayPut #VulnerablePeople #Firefighters #FFsafety #FFhealth #2019GrenfellRecommendations #SFE #GrenfellTowerFireInquiry #London #FireResistingDoorsets #FireCompartmentation #FireProtection #FireEvacuation #MooreBick #FireEngineering #FireEngineers #IFE #England #RIBA #Design #Management #Construction #HighRiseResidentialBuildings #UDHR #HumanRights #unCRPD #Discrimination #AusterityKills #Justice4Grenfell #Contraflow #LocalFireServices #Skill4Evacuation #Resilience #CoronaVirus #CoVID19 #Panic #SIA

England’s 2017 Grenfell Tower Fire – Never Again Elsewhere ??

2018-06-12 …

As we approach the First Anniversary of the Grenfell Tower Fire Tragedy, in England, on 14 June … a few days ago, on 4 June 2018, the first batch of Grenfell Expert Witness Reports were uploaded (https://www.bbc.com/news/uk-44356660) to the Grenfell Tower Inquiry Website (https://www.grenfelltowerinquiry.org.uk/) for public view.

At this time, in London … multiple, fragmented investigations are taking place into the actual fire incident … the role of the Local Authority, and building management … those involved in the refurbishment (‘tarting up’) design and construction … the fire services, particularly their ‘Stay Put’ Policy and how it adversely impacted on vulnerable Tower occupants during the emergency … and the highly flawed regulatory model of Building and Fire Codes with light-touch Control, which is still operating in England.  One of Murphy’s Laws immediately springs to mind with regard to the intended ineffectiveness of this overly-complex process !

Colour photograph showing Grenfell Tower in the background … undergoing an almost complete ‘cover-up’ … with, in the foreground, mementos of the Fire Tragedy fixed to railings by local residents. Click to enlarge. Photograph taken by CJ Walsh. 2018-04-29.

Many other countries have adopted some or all of this modern English regulatory model which, after the repeal of an older Bye-Law format, has been shaped by political expediency, cost-effectiveness and general ineptitude … with little or no adaptation to local conditions in the adopting jurisdictions.  Ireland adopted this model with some, but not a lot, of adaptation.

Fire Safety In Ireland ?

On 6 June 2018 … while that investigative activity was hitting the headlines in England … Minister Eoghan Murphy, T.D., Ireland’s Minister for Housing, Planning and Local Government, quietly published the Report: ‘Fire Safety in Ireland’http://www.housing.gov.ie/local-government/fire-and-emergency-management/fire-safety/eoghan-murphy-publishes-report-fire … by a High-Level Task Force within his Department’s National Directorate for Fire and Emergency Management, after serious concerns and fears had been expressed in the public media that a similar fire tragedy might also occur in this jurisdiction.

To be crystal clear … this Report is a Bureaucratic Whitewash … an insult to the Public !  Nice sounding technical ‘blarney’ camouflages a failure to deal directly with critical issues, and answer concerns … while other important issues are avoided altogether.

May 2018 – Ireland’s Department of Housing, Planning & Local Government Report

Fire Safety In Ireland  (PDF File, 2.55 MB)

Expanding on my comments in the Interview with Barry Lenihan, on RTE Radio 1’s Drive Time early evening news programme on Friday (2018-06-08) …

A.  Initially, Irish Local Authorities were requested to carry out a preliminary survey to identify all buildings of more than six storeys, or 18m in height.  Specifically, they were asked to identify those buildings which had an external cladding system which might be a cause for concern.

This height threshold of six storeys/18m is arbitrary … an external cladding system can be just as much a cause for concern in a building which is lower.  Imagine discarded cigarette butts or a rubbish fire at the base of such a system … and the resulting speed of fire spread and development across a building façade !

B.  The highly flawed regulatory model of Building and Fire Codes, with light-touch Control, which resulted in the Grenfell Tower Fire Tragedy … we also have.  Wake up and smell the coffee Ireland !

At the beginning of the 1990’s, when Ireland had been persuaded by the European Commission to finally introduce legal, national building regulations having a functional format … our National Authority Having Jurisdiction, in desperation, grabbed the then Approved Documents for England & Wales … brought them back to Ireland, put Irish covers on them, and originally called them ‘Technical Documents’ … but, after seeing a tiny ray of inspiring light, later changed their title to the more accurate ‘Technical Guidance Documents’ !  This hunger for adopting all things English which are fire safety related continues to this day … with a similar, ongoing division of Technical Guidance Document B: ‘Fire Safety’ into 2 Separate Volumes.

This may have been a convenient response under pressure … but it has been very short-sighted.  It has impeded the growth of a comprehensive and coherent philosophy on Safe, Inclusive, Age-Friendly, Resilient, Sustainable Planning, Design and Construction Codes/Controls which is suited to an Irish context and responsible local needs (not desires!).

C.  Everywhere … this Report has a lot – too much – to say about Fire Risk Assessment !  After the Grenfell Tower Fire, however, Fire Risk Assessments must only be carried out by competent persons … and the process of Fire Risk Assessment, itself, must be radically improved !  And of course, prior to any Risk Assessment … a proper Fire Hazard Appraisal must be carried out.

D.  To accurately present Fire Safety Trends in Ireland … it is not enough to furnish reliable fire fatality statistics.  It is also necessary to produce reliable fire injury statistics … and reliable information on direct/indirect socio-economic losses.

E.  The quality of fire safety related construction on Irish Building Sites continues to be very poor and problematic.  Fire Compartmentation is nowhere near being adequately – never mind acceptably – reliable !  And during the last few years we have had quite a number of close-calls concerning fire incidents in medium-rise residential buildings.

F.  Fire Evacuation for people with activity limitations is still handled atrociously in our current building regulations.  This is ironic because, on 20 March 2018 last, Ireland had to be dragged screaming to ratify the U.N. 2006 Convention on the Rights of Persons with Disabilities (CRPD) !

.

Positive Progress By Another Path !

1.  Abandon the outdated English functional requirements in THEIR building regulations … and adopt a far better, more up-to-date body of functional requirements which is already on the Irish Statute Books … Annex I of the European Union’s Construction Products Regulation 305/2011.  And because there are important horizontal linkages between requirements … immediately finish the ridiculous current separation between Fire Safety requirements and all of the other requirements.  And yes … new Technical Guidance Documents will have to be drafted.

.Regulation (EU) No 305/2011 of the European Parliament and of the Council, of 9 March 2011, laying down harmonized conditions for the marketing of construction products and repealing Council Directive 89/106/EEC

EU Regulation 305/2011 – Construction Products.  See Annex I

(PDF File, 998 Kb)

2.  Yes … ‘Persons Having Control’ of buildings have responsibilities with regard to fire safety.  But that is only one side of the coin !  National and Local Authorities Having Jurisdiction have greater responsibilities.

If we are at all serious about Consumer Protection … bad, inadequate, faulty construction must be prevented beforehand … it is too late, too costly and, in many cases, too impractical to correct afterwards.  Self Regulation by building design professions and construction organizations is NO Regulation !  Stringent, independent technical control inspections must be carried out on all projects by Building Control personnel … which used to happen in Dublin City/County and Cork City/County prior to the introduction of legal building regulations in the early 1990’s … and, depending on complexity, must also be carried out at critical stages during the construction process.

Building Control Sections in all Local Authorities must be properly resourced with competent personnel, equipment, training and support infrastructure.

Inspections concerning compliance with all functional requirements in the building regulations, including fire safety, must be carried out only by Building Control Personnel.  Chief Fire Officers must not be allowed to manage or be involved in any aspect of Building Control.  On the same project … a Disability Access Certificate Application and a Fire Safety Certificate Application must be inter-linked and overlap sufficiently, showing no gaps in compliance.  Inspections must be carried out in connection with all Certificate Applications.  Building Control personnel must satisfy themselves that actual construction at least matches, if not improves upon, what is shown in design documentation.

Building Control Inspection Reports must be made available for public view.

3.  Firefighters are NOT a disposable Social Asset !  National and Local Authorities Having Jurisdiction … and some Chief Fire Officers … must begin to understand this fundamental truth !

Fire Services in all Local Authorities must each be properly resourced according to local needs … with competent personnel, equipment, training and support infrastructure.  Shared provision of resources looks very neat on paper but, in practice, works very badly.  Refer to the Grenfell Tower Fire and London Fire Brigade having to borrow firefighting equipment from other Fire Services.

After the 2015 Tianjin Regional Fire Devastation, in China, and the 2001 WTC Attacks on 9-11, in New York City … front line firefighters must be supported by Specialist Hazard Appraisal and Structural Engineering Units.

For Firefighter Safety in buildings and to quickly find people with activity limitations waiting in Areas of Rescue Assistance and/or other survivors in different locations … a portable and reliable Thermal Imaging Camera is an essential piece of every firefighter’s equipment.

And Firefighter Safety begins with good building design.  In all but the most simple building types, Circulation Routes must be designed for Contraflow … people moving away from a fire in a building and towards safety while, at the same time, heavily equipped firefighters are entering the building and moving towards the fire.

Colour photograph showing Contraflow on a building staircase … people moving down a staircase away from a fire and towards safety while, at the same time, heavily equipped firefighters are moving up the staircase towards the fire. Click to enlarge.

There is no place for ‘Stay Put’ Policies in Irish Residential Buildings of any height.

.

Ireland’s 2017 Oireachtas Report: ‘Safe As Houses’ …

December 2017 – Houses of the Oireachtas – Joint Committee on Housing, Planning & Local Government

Safe As Houses ?  A Report On Building Standards, Building Controls & Consumer Protection

(PDF File, 1.01 MB)

This was a good effort by our public representatives … but they missed core issues !

.

After The Grenfell Tower Fire !

Further to my last Blog, dated 2017-10-10 …

The 2017 Fire in England was not an extraordinary fire.  Since the beginning of this decade, we continue to see a series of such fires: South Korea (2010) – UAE & France (2012) – Chechnya (2013) -Australia (2014) – UAE, Azerbaijan & UAE again (2015) – UAE (2016) – UAE & Russia (2017) – Turkey (2018).

With regard to Command & Control of Large Scale Emergencies … English AHJ’s should have paid attention to the 2005 & 2008 U.S. National Institute of Science & Technology (NIST) Recommendations following the 9-11 WTC Buildings 1, 2 & 7 Collapses.

The Fire Safety Objectives in current Building & Fire Codes/Regulations are very limited.  In Ireland, this is clearly stated in Technical Guidance Document B …

‘ Building Regulations are made for specific purposes.  Part B of the Second Schedule to the Building Regulations is therefore primarily concerned with the health, safety and welfare of persons.  The fire safety measures outlined in this guidance document are intended for the protection of life from fire.’

Only insofar as it is necessary to protect the lives of able-bodied building users/occupants … is there a concern for property protection.

There is only inadequate, token concern for the protection of people with disabilities.

Client organizations, facility managers, building designers, construction organizations … and journalists … must fully comprehend these limits.

In the photograph below … look closely at the External Firefighting Operations at the bottom of the Tower.  There are limits to what can be achieved from outside a building !

Colour photograph showing the developed fire at Grenfell Tower, in London. At the bottom of the Tower, external firefighting operations can be viewed. Click to enlarge.

.

  • A Fire Suppression System (Water Sprinklers/Mist/Hybrid) is an essential Fire Protection Measure in ALL Medium and High-Rise Residential Buildings … which include Apartment Blocks, Hotels, Hostels, Student Accommodation & Social Housing, i.e. ANYWHERE there is a Sleeping Hazard.

 

  • A Reliable and Credible Fire Detection & Warning System is an essential Fire Protection Measure in ALL Buildings … and must be capable, under the control of Building Management, of transmitting warnings in many formats, i.e. Audible + Visual + Multi-Lingual Voice + Tactile.

 

  • Fire Evacuation Routes in Buildings must be designed for CONTRAFLOW … people moving away from a fire and towards safety while, at the same time, heavily equipped firefighters are entering the building and moving towards the fire.

 

  • Good Fire Evacuation Route Design is INTUITIVE and OBVIOUS.  In many buildings, however, this is not always the reality.  Effective Fire Evacuation Signage … comprising high-level signage, low-level signage, with both supplemented by photoluminescence … must be installed in ALL Buildings.

 

  • For the purpose of protecting Vulnerable Building Users in Fire Emergencies, ALL Lifts/Elevators in Buildings must be capable of being used for Evacuation.

 

  • Fire Risk Assessments must NO LONGER be carried out by people WITHOUT COMPETENCE in Fire Engineering AND Building Design & Construction … and the Fire Risk Assessment Process itself must be thoroughly re-examined and upgraded.

.

.

END

.

SFE Work Programme 2017 – Want To Get Involved & Help ??

2017-01-05:  Happy New Year to All and One !

SUSTAINABLE FIRE ENGINEERING (SFE)

The creative, person-centred and ethical fire engineering response – in resilient built or wrought form, and using smart systems – to the intricate, open, dynamic and continually evolving concept of Sustainable Human & Social Development … the many aspects of which must receive balanced and synchronous consideration.

SFE PRIORITY THEMES

 1.  Fire Safety for ALL – Not Just for SOME People.  Nobody Left Behind !

Do Building Designers and Fire Engineers have any understanding of what it feels like to be left behind in a fire emergency … perhaps to die ?

Do Building Designers and Fire Engineers have any understanding of the ‘real’ people who use their buildings … or their ‘real’ needs ?

2.  Firefighter Safety – It’s So Easy to Dramatically Improve Their Safety At A Fire Scene !   A Firefighter’s Protective Clothing and Equipment are not enough !

Conscious awareness of this issue by Building Designers and Fire Engineers is required … and appropriate education/training.

3.  Property Protection – A Minor Code Fire Safety Objective, Insofar As It Is Necessary to Protect the Safety of Building Users … Only !

Fire damage and post-fire reconstruction/refurbishment are a huge waste of resources.  On the other hand, protection of an organization’s image/brand is important … and business continuity is essential.

Heritage Fire Losses cannot be replaced !

To properly protect Society and the interests of a Client/Client Organization … Building Designers and Fire Engineers are ethically bound to clearly explain the limitations of Code and Standard Fire Safety Objectives to their Client/Client Organization.

4.  Environmental Impact – Prevention Is Far, Far Better Than Cure.  Instead of resisting, and erecting ‘professional’ barriers … Spatial Planners, Building Designers and Fire Engineers must begin to properly understand this concept … and act ethically to defend and protect the environment !

Environmental Impact:  Any effect caused by a given activity on the environment, including human health, safety and welfare, flora, fauna, soil, air, water, and especially representative samples of natural ecosystems, climate, landscape and historical monuments or other physical structures, or the interactions among these factors ; it also includes effects on accessibility, cultural heritage or socio-economic conditions resulting from alterations to those factors.

This Planet – Our Common Home – can no longer suffer the scale and extent of total devastation seen after the 2015 Tianjin (China) Regional Fire Disaster !

5.  Building Innovation, People and Their Interaction – Fire Engineers and Firefighters must understand current approaches to more sustainable building design, the ‘real’ people who use the built environment, and the complex interactions between both.

People with Activity Limitations (E) / Personnes à Performances Réduites (F):  Those people, of all ages, who are unable to perform, independently and without aid, basic human activities or tasks – because of a health condition or physical/mental/cognitive/psychological impairment of a permanent or temporary nature.

The above Term, in English and French, includes …

  • people who experience difficulty in walking, with or without a facilitation aid, e.g. stick, crutch, calliper or walking frame ;
  • wheelchair users ;
  • the very young (people under 5 years of age), frail older people, and women in the later stages of pregnancy ;
  • people who are visually and/or hearing impaired ;
  • people who suffer from arthritis, asthma, or a heart condition … or any partial or complete loss of language related abilities, i.e. aphasia … or who have a cognitive impairment disorder, including dementia, amnesia, brain injury, or delirium ;
  • people impaired after the use of alcohol, other ‘social’ drugs e.g. cocaine and heroin, and some medicines … or following exposure to environmental pollution and/or other irresponsible human activity, e.g. war or terrorism ;
  • people who experience a panic attack in a real fire situation or other emergency ;
  • people, including firefighters, who suffer incapacitation as a result of exposure, during a real fire, to smoke and poisonous/toxic substances and/or elevated temperatures.

6.  Sustainable Design & Engineering – Get With The Programme !   The extensive United Nations 2030 Sustainable Development Framework Agenda was overwhelmingly agreed and adopted in 2015.

Sustainability Impact Assessment (SIA):  A continual evaluation and optimization process – informing initial decision-making, design, shaping activity/product/service realization, useful life, and termination or final disposal – of the interrelated positive and negative social, environmental, economic, institutional, political and legal impacts on balanced and equitable implementation of Sustainable Human & Social Development.

‘Carrots and Sticks’ can only achieve so much.  Spatial Planners, Building Designers and Fire Engineers must – individually and as a group – subscribe to a robust Code of Ethics which is fit for purpose in today’s Human Environment.

2016 Dublin-Code-of-Ethics: Design, Engineering, Construction & Operation of a Safe, Resilient & Sustainable Built Environment for All  (PDF File, 112Kb)

.

SUSTAINABLE FIRE ENGINEERING (2017)

New CIB W14: ‘Fire Safety’ Research Working Group VI Reflection Document: ‘Sustainable Fire Engineering Design, Construction & Operation’, which will establish a framework for the future development of Sustainable Fire Engineering.

Preparation of this Document will soon begin, and the following issues will be explored:

  • Conceptual Framework for Sustainable Fire Engineering (SFE), with a necessary accompanying Generic SFE Terminology ;
  • Strategy for Future SFE Development ;
  • Implementation of 2005 & 2008 NIST WTC 9-11 Recommendations ;
  • Fresh, New SFE Research Agenda ;
  • Resilient Implementation of SFE Research Agenda.

Would you like to get involved, and help with this work ?

.

PRIORITY THEME 1 – FIRE SAFETY FOR ALL (2017)

The Fire Safety Task Group, chaired by CJ Walsh, of ISO Technical Committee 59, Sub-Committee 16, Working Group 1, has already commenced the revision and further development of the fire safety texts in International Standard ISO 21542 (2011): ‘Building Construction – Accessibility & Usability of the Built Environment’.

The main effort, initially, has been focused on developing a coherent Fire Safety for All approach … token consideration, or a post-design graft-on, of the fire safety needs of people with activity limitations do not work, and are unacceptable.

Progress with this work can be followed here: http://www.fire-safety-for-all.sustainable-design.ie/iso-21542/

The next ISO Meeting will take place in Madrid, Spain … towards the end of March 2017.

Would you like to get involved ?

.

AND … Would you like to discuss any of the above issues ?   Well … Why not join the LinkedIn SFE Group at: https://www.linkedin.com/groups/8390667 ??

.

.

END

Fire Evacuation Use of Lifts/Elevators, Escalators & Travellators !!

2016-05-16:  Media coverage of the Brussels Hive Attack, on 22 March 2016 … and, more recently, my own experience travelling in the Rome Metro, where the lines have been constructed deep in the ground to avoid the city’s vast and rich archaeological heritage … made me seriously wonder about how vulnerable users of the built environment can possibly cope in emergencies.

Escalators (moving stairs) and Travellators (horizontal moving walkways) are very common in public buildings.  They greatly facilitate convenient and comfortable circulation for everybody … especially in large, extensive and complex building types.  Escalators are absolutely essential in metro environments, both for access and egress.

Escalators which are static … which don’t move, for one reason or another … are dangerous.  The rise of steps in the main part of the escalator is usually very high, too high for any type of public building … and at the top and bottom of the escalator, the step rise varies dramatically … which is a recipe for trips and falls, particularly in any sort of emergency.

AND … we know that during a fire emergency in a building, many people will attempt to evacuate that building by re-tracing their route of entry … whatever the hazard and wherever it is located.

Too many Standards and Guideline Documents take the easy option … and recommend that lifts/elevators, escalators and travellators should all be shut down during emergencies, and their use prevented.  For the moment, I am thinking of just two examples:

  • European Standard EN 115: Safety of Escalators and Moving Walks – Part 1: Construction and Installation.  2008-05-29, including Amendment 1 2010-02-23.
  • Guidelines for the Safe Operation of Escalators and Moving Walks, published by the Safety Assessment Federation (GB), in consultation with the British Health & Safety Executive.  Issue 1, 2011-05-24.

These Recommendations … this Guidance, or Advice, or Whatever … show absolutely no consideration for the Safe Evacuation of People With Activity Limitations (2001 WHO ICF) in an Emergency.

These Recommendations … this Guidance, or Advice, or Whatever … are WRONG !

Subject to some simple requirements, e.g. a separate fire-protected electrical supply in each case, and appropriate management and fire service control, etc … Lifts/Elevators, Escalators and Travellators should all be available for use by people evacuating a building/facility during an emergency … and for use by firefighters accessing that same building/facility.

Building Designers, Fire Services & Standards Organizations … please take careful note !!

.

.

END

Conventional Structural Fire Engineering Design – How Flawed ?

2012-05-18:  Déjà-vu …

” In the early hours of the morning of Saturday, 14th February 1981, a disastrous fire swept through a building called the Stardust in the North Dublin suburb of Artane during the course of a St. Valentine’s Night ‘disco’ dance.  Forty eight people were killed and one hundred and twenty eight seriously injured.  The overwhelming majority of the victims were young people. “

‘Introduction’, Report of the Tribunal of Inquiry on the Fire at the Stardust, Artane, Dublin, on the 14th February 1981.  Report dated 30 June 1982.

As a young architect in private practice … I witnessed, at first hand, the Dublin Fire ‘Establishment’ disappear from public view, without trace, after the Stardust Fire Tragedy.  It was almost impossible, for at least a year afterwards, to have a meeting with any Fire Prevention Officer in the Dublin Fire Authority.  This was a very valuable lesson.

Later, following the publication of the Stardust Tribunal Report … were its Recommendations implemented … with urgency … and conscientiously ?   No way.  For example, it was more than ten years after the Stardust Fire before an inadequate system of legal National Building Regulations was introduced in Ireland.  And to this day, the system of AHJ monitoring of construction quality, throughout the country, is weak and ineffective … lacking both competent personnel and resources !

The proof of the pudding is in the eating … and one of the results, also in Dublin, has been last year’s debacle at the Priory Hall Apartment Complex … where all of the residents had to leave their expensive apartments for fire safety (and many other) reasons.  The tip of a very large iceberg.  See my post, dated 18 October 2011 .

And this is where the problems usually begin …

” There has been a tendency among students of architecture and engineering to regard fire safety as simply a question of knowing what is required in terms of compliance with the regulations.  The recommendation of the Tribunal of Enquiry into the Summerland Disaster that those responsible for the design of buildings should treat fire safety as an integral part of the design concept itself, has not yet been reflected in the approach to the subject at university level.  There is still clearly a need for a new approach to the structuring of such courses which will in time bring to an end the attitude of mind, too prevalent at the moment, that compliance with fire safety requirements is something that can be dealt with outside the context of the overall design of the building. “

‘Chapter 9 – Conclusions & Recommendations’, Report of the Tribunal of Inquiry on the Fire at the Stardust, Artane, Dublin, on the 14th February 1981.  Report dated 30 June 1982.

This Recommendation has still not been implemented … and note the reference to the earlier fire at the Summerland Leisure Centre in 1973, on the Isle of Man, when 50 people were killed and 80 seriously injured.

Today … the same attitude of mind, described so well above, stubbornly persists in all sectors, and in all disciplines, of the International Construction Industry … even within ISO Technical Committee 92: ‘Fire Safety’ !

.

Which brings me, neatly, to the recent question posed by Mr. Glenn Horton on the Society of Fire Protection Engineers (SFPE-USA) Page of LinkedIn ( http://www.linkedin.com/groups?gid=96627 ).   As usual, the shortest questions can prove to be the most difficult to answer …

” Can you expand on, or point to where anyone has discussed, the ‘very flawed design approach’ please ? “

.

ESSENTIAL PRELIMINARIES …

     1.  Foundation Documents

I am assuming that ‘people-who-need-to know’, at international level, are familiar with the Recommendations contained in these 2 Reports …

  • NIST (National Institute of Standards and Technology).  September 2005.  Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Final Report on the Collapse of the World Trade Center Towers.  NIST NCSTAR 1   Gaithersburg, MD, USA ;

and

  • NIST (National Institute of Standards and Technology).  August 2008.  Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Final Report on the Collapse of World Trade Center Building 7.  NIST NCSTAR 1A   Gaithersburg, MD, USA ;

… and the contents of the CIB W14 Research WG IV Reflection Document … which, together with its 2 Appendices, can be downloaded from this webpage … https://www.cjwalsh.ie/progressive-collapse-fire/ … under the section headed: ‘April 2012’.

However … I am utterly dismayed by the number of ‘people-who-need-to know’ … who do not know … and have never even bothered to dip into the 2 NIST Reports … or the many long-term Post 9-11 Health Studies on Survivors which have already revealed much priceless ‘real’ information about the short and medium term adverse impacts on human health caused by fire !

CIB W14 Research Working Group IV would again strongly caution that Fire-Induced Progressive Damage and Disproportionate Damage are fundamental concepts to be applied in the structural design of all building types.

.

     2.  Technical Terminology

While attending the ISO TC92 Meetings in Thessaloniki, during the last week of April 2012, I noticed not just one reference to ‘fire doors’ in a Draft ISO Fire Standard … but many.  It surprised me, since I thought this issue had been successfully resolved, at ISO level, many years ago.  There is no such thing as a ‘fire door’ … and the careless referencing of such an object, which has no meaning, in building codes and standards has caused countless problems on real construction sites during the last 20-30 years.

Please follow this line of thought …

Fire Resistance:  The inherent capability of a building assembly, or an element of construction, to resist the passage of heat, smoke and flame for a specified time during a fire.

Doorset:  A building component consisting of a fixed part (the door frame), one or more movable parts (the door leaves), and their hardware, the function of which is to allow, or to prevent, access and egress.

[Commentary: A doorset may also include a door saddle / sill / threshold.]

Fire Resisting Doorset / Shutter Assembly:  A doorset / shutter assembly, properly installed or mounted on site, the function of which is to resist the passage of heat, smoke and flame for a specified time during a fire.

… and so we arrive at the correct term … Fire Resisting Doorset … which, as an added bonus, also alerts building designers, construction organizations, and even AHJ inspectors, to the fact that there is more involved here than merely a door leaf.

Now then, I wonder … how, in any sane and rational world, can the term Fire Resistance be used in relation to structural performance during a fire, and the cooling-phase afterwards ?   Yet, this is exactly what I read in the building codes of many different jurisdictions.  Do people understand what is actually going on ?   Or, is the language of Conventional Fire Engineering so illogical and opaque that it is nearly impossible to understand ?

And … if this problem exists within the International Fire Science & Engineering Community … how is it possible to communicate effectively with other design disciplines at any stage during real construction projects.  The artificial environments found in academia are not my immediate concern.

.

     3.  Fire Research & Development outside CIB W14 & ISO TC92

In 2012 … there is something very wrong when you have to struggle to persuade a group of people who are developing an ISO Standard on Design Fire Scenarios … that they must consider Environmental Impact as one of the major consequences of a fire to be minimized … along with ‘property losses’ and ‘occupant impact’.  This is no longer an option.

Environmental Impact:  Any effect caused by a given activity on the environment, including human health, safety and welfare, flora, fauna, soil, air, water, and especially representative samples of natural ecosystems, climate, landscape and historical monuments or other physical structures, or the interactions among these factors; it also includes effects on accessibility, cultural heritage or socio-economic conditions resulting from alterations to those factors.

So … how timely, and relevant to practitioners, are ISO Fire Standards ?   Perhaps … obsolete at publication … and not very ??

And … there is lot more to the Built Environment than buildings …

Built Environment:  Anywhere there is, or has been, a man-made or wrought (worked) intervention in the natural environment, e.g. cities, towns, villages, rural settlements, service utilities, transport systems, roads, bridges, tunnels, and cultivated lands, lakes, rivers, coasts, and seas, etc … including the virtual environment.

.

We should be very conscious that valuable fire-related research takes place outside, and unrelated to, the established fire engineering groupings of CIB W14 & ISO TC92.  But I am curious as to why this research is not properly acknowledged by, or encouraged and fostered within, the ‘system’ ?

Example A:  Responding to Recommendation 18 in the 2005 NIST WTC Report … a Multi-Disciplinary Design Team published an article in the magazine Bâtiment et Sécurité (October 2005) on The PolyCentric Tower.  I very much enjoy giving practitioners a small flavour of this work, whenever I make presentations at conferences and workshops …

Colour image, from one of my Overhead Presentations ... showing The PolyCentric Tower (2005), developed by a French Multi-Disciplinary Design Team in response to Recommendation 18 in the 2005 NIST WTC Report. Click to enlarge.
Colour image, from one of my Overhead Presentations ... showing The PolyCentric Tower (2005), developed by a French Multi-Disciplinary Design Team in response to Recommendation 18 in the 2005 NIST WTC Report. Click to enlarge.

.

Example B:  In spite of a less than helpful submission (to put it mildly) from ISO TC92 Sub-Committee 4 … ISO 21542: ‘Building Construction – Accessibility & Usability of the Built Environment’ was finally published in December 2011 … but it was developed by a Sub-Committee of ISO TC59: ‘Buildings & Civil Engineering Works’

Colour image, from one of my Overhead Presentations ... showing the design of a notional Fire Evacuation Staircase, with an adjoining Area of Rescue Assistance, which responds directly to the 2005 NIST WTC Recommendations. See Figure 62 in ISO 21542:2011. Click to enlarge.
Colour image, from one of my Overhead Presentations ... showing the design of a notional Fire Evacuation Staircase, with an adjoining Area of Rescue Assistance, which responds directly to the 2005 NIST WTC Recommendations. See Figure 62 in ISO 21542:2011. Click to enlarge.

.

With the involvement and support of ISO Technical Committee 178: ‘Lifts, Elevators & Moving Walks’ during its long gestation … ISO 21542 is now able to indicate that all lifts/elevators in a building should be capable of being used for evacuation in the event of a fire.  This is already a design feature in a small number of completed Tall Building Projects.  Once more, this is no longer an option.

In addition … if a Fire Evacuation Staircase has a minimum unobstructed width of 1.5 m (from edge of handrail on one side of the staircase to edge of handrail on the opposite side) … this will be sufficient to facilitate the following tasks …

  • Assisted Evacuation by others, or Rescue by Firefighters, for those building users who cannot independently evacuate the building, e.g. people with activity limitations … shown above, on the right, is assistance being given by three people (one at each side, with one behind) to a person occupying a manual wheelchair ;
  • Contraflow Circulation … emergency access by firefighters entering a building and moving towards a fire, while people are still evacuating from the building to a ‘place of safety’ remote from the building … shown above, bottom left, is how not to design an evacuation staircase (!) ;
  • Stretcher Lifting … lifting a mobility-impaired person, who may be conscious or unconscious, on a stretcher ;
  • Firefighter Removal & Contraflow … shown above, top left, is removal of a firefighter from a building by colleagues in the event of injury, impairment, or a fire event induced health condition … while other firefighters may still be moving towards the fire.

Note that in a Fire Evacuation Staircase … all Handrails are continuous … each Stair Riser is a consistent 150 mm high … each Stair Tread/Going is a consistent 300 mm deep … and there are No Projecting Stair Nosings.

Most importantly … in order to assign sufficient building user space in the design of an Area of Rescue Assistance … ISO 21542 also provides the following Key Performance Indicator … just one aspect of a ‘maximum credible user scenario’ …

10% of people using a building (including visitors) have an impairment, which may be visual or hearing, mental, cognitive or psychological, or may be related to physical function, with some impairments not being identifiable.

Is There Any Connection Between Examples A & B ?   There is, and it is a connection which is critical for public safety.  The following Performance Indicator illustrates the point …

Innovative Structural Design – Perimeter Core Location – Design for Fire Evacuation – Evacuation for All

” A Building must not only remain Structurally Stable during a fire event, it must remain Serviceable for a period of time which facilitates:

  • Rescue by Firefighters of people with activity limitations waiting in areas of rescue assistance ;
  • Movement of the firefighters and those people with activity limitations, via safe and accessible routes, to Places of Safety remote from the building ;
  • With an assurance of Health, Safety & Welfare during the course of this process of Assisted Evacuation. “

[Refer also to the Basic Requirements for Construction Works in Annex I of the European Union’s Construction Product Regulation 305/2011 – included as Appendix II of the CIB W14 WG IV Reflection Document.  Are the Basic Requirements being interpreted properly … or even adequately ??]

.

ANSWERS TO THE QUESTION …

The Greek Paper is included as Appendix I of CIB W14 WG IV Reflection Document … in order to show that Fire-Induced Progressive Damage is also an issue in buildings with a reinforced concrete frame structure.  It is more straightforward, here, to concentrate on buildings with a steel frame structure.

a)  Use of ‘Fire Resistance'(?) Tables for Structural Elements

We should all be familiar with these sorts of Tables.  The information they contain is generated from this type of standard test configuration in a fire test laboratory …

… and this sort of criterion for ‘loadbearing horizontal elements’ in a fire test standard …

A single isolated loaded steel beam, simply supported, is being tested.  As deflection is the only type of deformation being observed and measured … the critical temperature of the steel, i.e. the point when material strength begins to fail rapidly and the rate of beam deflection increases dramatically … is the sole focus for all stakeholders.

Using these Tables, it is very difficult to escape the conclusion that we are merely interior decorators … applying flimsy thermal insulation products to some steel structural elements (not all !) … according to an old, too narrowly focused, almost static (‘cold form’) recipe, which has little to do with how today’s real buildings react to real fires !

This ‘non-design’ approach is entirely inadequate.

.

With regard to the use of these Tables in Ireland’s Building Regulations (Technical Guidance Document B), I recently submitted the comments below to the relevant Irish AHJ.  These same comments could just as easily apply to the use of similar Tables in the Building Regulations for England & Wales (Approved Document B) …

” You should be aware that Table A1 and Table A2 are only appropriate for use by designers in the case of single, isolated steel structural elements.

In steel structural frame systems, no consideration is given in the Tables to adequate fire protection of connections … or limiting the thermal expansion (and other types of deformation) in fire of steel structural elements … in order to reduce the adverse effects of one element’s behaviour on the rest of the frame and/or adjoining non-loadbearing fire resisting elements of construction.

In the case of steel structural frame systems, therefore, the minimum fire protection to be afforded to ALL steel structural elements, including connections, should be 2 Hours.  Connections should also be designed and constructed to be sufficiently robust during the course of a fire incident.  This one small revision will contribute greatly towards preventing Fire-Induced Progressive Damage in buildings … a related, but different, structural concept to Disproportionate Damage

Disproportionate Damage

The failure of a building’s structural system  (i) remote from the scene of an isolated overloading action;  and (ii) to an extent which is not in reasonable proportion to that action.

Fire-Induced Progressive Damage

The sequential growth and intensification of structural deformation and displacement, beyond fire engineering design parameters, and the eventual failure of elements of construction in a building – during a fire and the ‘cooling phase’ afterwards – which, if unchecked, will result in disproportionate damage, and may lead to total building collapse.

Coming from this background and heritage … it is very difficult to communicate with mainstream, ambient structural engineers who are speaking the language of structural reliability, limit state design and serviceability limit states.

.

b)  NIST Report: ‘Best Practice Guidelines for Structural Fire Resistance Design of Concrete and Steel Buildings’ (NISTIR 7563 – February 2009)

At the end of Page 18 in NISTIR 7563 …

2.7.2 Multi-Storey Frame Buildings

In recent years, the fire performance of large-frame structures has been shown in some instances to be better than the fire resistance of the individual structural elements (Moore and Lennon 1997).  These observations have been supported by extensive computer analyses, including Franssen, Schleich, and Cajot (1995) who showed that, when axial restraint from thermal expansion of the members is included in the analysis of a frame building, the behaviour is different from that of the column and beam analyzed separately.

A large series of full-scale fire tests was carried out between 1994 and 1996 in the Cardington Laboratory of the Building Research Establishment in England.  A full-size eight-storey steel building was constructed with composite reinforced concrete slabs on exposed metal decking, supported on steel beams with no applied fire protection other than a suspended ceiling in some tests.  The steel columns were fire-protected.  A number of fire tests were carried out on parts of one floor of the building, resulting in steel beam temperatures up to 1000 °C, leading to deflections up to 600 mm but no collapse and generally no integrity failures (Martin and Moore 1997). “

Those were Experimental Fire Tests at Cardington, not Real Fires … on ‘Engineered’ Test Constructions, not Real Buildings !!   And … incredibly, for a 2009 document … there is no mention at all of World Trade Center Buildings 1, 2 or 7 !?!   Where did they disappear to, I wonder ?   Too hot to handle ???

Computer Model Verification and Validation (V&V) are very problematic issues within the International Fire Science and Engineering Community.  The expected outcome of a Model V&V Process, however, is a quantified level of agreement between experimental data (and, if available, real data) and model prediction … as well as the predictive accuracy of the model.

Now … please meditate carefully on the following …

” NCSTAR 1A (2008)  Recommendation D   [See also NCSTAR 1 (2005)  Recommendation 5)

NIST recommends that the technical basis for the century-old standard for fire resistance testing of components, assemblies and systems be improved through a national effort.  Necessary guidance also should be developed for extrapolating the results of tested assemblies to prototypical building systems.  A key step in fulfilling this Recommendation is to establish a capability for studying and testing components, assemblies, and systems under realistic fire and load conditions.

Of particular concern is that the Standard Fire Resistance Test does not adequately capture important thermally-induced interactions between structural sub-systems, elements, and connections that are critical to structural integrity.  System-level interactions, especially due to thermal expansion, are not considered in the standard test method since columns, girders, and floor sub-assemblies are tested separately.  Also, the performance of connections under both gravity and thermal effects is not considered.  The United States currently does not have the capability for studying and testing these important fire-induced phenomena critical to structural safety.

Relevance to WTC 7:  The floor systems failed in WTC 7 at shorter fire exposure times than the specified fire rating (two hours) and at lower temperatures because thermal effects within the structural system, especially thermal expansion, were not considered in setting the endpoint criteria when using the ASTM E 110 or equivalent testing standard.  The structural breakdowns that led to the initiating event, and the eventual collapse of WTC 7, occurred at temperatures that were hundreds of degrees below the criteria that determine structural fire resistance ratings. “

The design approach outlined in NISTIR 7563 is not only very flawed … it lacks any validity … because very relevant and important real fire data has been totally ignored.  The Cardington Experimental Fires were not all that they seemed.

.

c)  Current ISO TC92 International Case Study Comparison

Structural Fire Engineering Design of an Airport Terminal Building serving the Capital City of a large country (which shall remain nameless) … constructed using Portal Steel Frames …

My first concern is that the Structural Fire Engineering Design has been undertaken in isolation from other aspects of the Building’s Fire Engineering Design.

On Page 3 of the Case Study Report …

4.2 Objectives & Functional Requirements for Fire Safety of Structures

The fire safety objectives of the airport terminal emphasize the safety of life, conservation of property, continuity of operations and protection of the environment. “

Should these not be the Project-Specific Fire Engineering Design Objectives ?   Since when, for example, is ‘continuity of operations’ a concern in building codes ??

On Page 7 of the Case Study Report …

5.3  Identify Objectives, Functional Requirements & Performance Criteria for Fire Safety of Structure

The Fire Safety Objective of the Steel Structure:  There should be no serious damage to the structure or successive collapse in case of fire.

The Functional Requirements are defined as the followings:

(1)  Prevent or limit the structural failure in case of fire so as to prevent the fire from spreading within the compartment or to the adjacent fire compartment or the adjacent buildings (to prevent fire spread) ;

(2)  Prevent or limit the partial structural failure in case of fire so as to protect the life safety of the occupants and firefighters (to protect life safety) ;

(3)  Prevent or limit the structural deformation or collapse so as not to increase the cost or difficulties of the after-fire restoration (to reduce reconstruction cost).

One of the following Performance Requirements shall be met:

(1)  The load-bearing capacity of the structure (Rd) shall not be less than the combined effect (Sm) within the required time, that is Rd ≥ Sm.  (The maximum permitted deflection for the steel beam shall not be larger than L/400, and the maximum stress of the structure under fire conditions shall not be larger than fyT) ;   or

(2)  The fire resistance rating of the steel structure (td) shall not be less than the required fire resistance rating (tm), that is, td ≥ tm ;   or

(3)  Td – the critical internal temperature of the steel structure at its ultimate state shall not be less than Tm (the maximum temperature of the structure within required fire resistance time duration), that is Td ≥ Tm.  (300 ℃) “

Once again … we see an emphasis on critical temperature, beam deflection (only), and material strength.  L/400 is an impressive Fire Serviceability Limit State … a different world from L/20 or L/30 … but what about other important types of steel structural member deformation, e.g. thermal expansion and distortion ??

Furthermore … if there is a major fire in the area under the lower roof (see Section above) … because of structural continuity, any serious impact on the small frame will also have an impact on the large frame.  For Structural Fire Engineering reasons … would it not be wiser to break the structural continuity … and have the small and large portal frames act independently ?

It is proposed that the Portal Frames will NOT be fully fire protected … just the columns, up to a height of 8 metres only.  If ‘conservation of property’ and ‘continuity of operations’ are important fire engineering design objectives in this project … why isn’t all of the steel being fully protected ???   What would be the additional cost, as a percentage of the total project cost ?

What exactly is infallible about current Design Fires and Design Fire Scenarios ???   Not much.  And in the case of this particular building, should a ‘maximum credible fire scenario’ be at least considered ?

And … what is the fire protection material, product or system being used to protect the Portal Frames ?   Will it be applied, fixed or installed correctly ?   What is its durability ?   Will it be able to resist mechanical damage during the construction process … and afterwards, during the fire event ?   What is the reliability of this form of fire protection measure ??

So many questions …

.

.

END

Enhanced by Zemanta

Post-9/11 & Post-Mumbai Fire Engineering – What Future ?

Previous Posts in This Series …

2011-10-25:  NIST’s Recommendations on the 9-11 WTC Building Collapses … GROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30)

2011-11-18:  NIST WTC Recommendations 4-7 > Structural Fire EnduranceGROUP 2.  Enhanced Fire Endurance of Structures – Recommendations 4, 5, 6 & 7

2011-11-24:  NIST WTC Recommendations 8-11 > New Design of StructuresGROUP 3.  New Methods for Fire Resisting Design of Structures – Recommendations 8, 9, 10 & 11

2011-11-25:  NIST WTC Recommendations 12-15 > Improved Active ProtectionGROUP 4.  Improved Active Fire Protection – Recommendations 12, 13, 14 & 15

2011-11-30:  NIST Recommendations 16-20 > Improved People EvacuationGROUP 5.  Improved Building Evacuation – Recommendations 16, 17, 18, 19 & 20

2011-12-04:  NIST WTC Recommendations 21-24 > Improved FirefightingGROUP 6.  Improved Emergency Response – Recommendations 21, 22, 23 & 24

2011-12-07:  NIST WTC Recommendations 25-28 > Improved PracticesGROUP 7.  Improved Procedures and Practices – Recommendations 25, 26, 27 & 28

2011-12-08:  NIST WTC Recommendations 29-30 > Improved Fire EducationGROUP 8.  Education and Training – Recommendations 29 & 30 (out of 30)

.

Colour image showing 'The Cloud' Residential Tower Project, in Seoul (South Korea) ... which will be completed in 2015. Design by MVRDV Architects, The Netherlands. Click to enlarge.
Colour image showing 'The Cloud' Residential Tower Project, in Seoul (South Korea) ... which will be completed in 2015. Design by MVRDV Architects, The Netherlands. Click to enlarge.

.

2011-12-15:  You know what is coming soon … so Merry Christmas & Happy New Year to One and All !!

.

  1.     There were 2 Important Reasons for undertaking this Series of Posts …

(a)       The General Public, and particularly Client Organizations, should be facilitated in directly accessing the core content of the 2005 NIST WTC Recommendations.  Up to now, many people have found this to be a daunting task.  More importantly, I also wanted to clearly show that implementation of the Recommendations is still proceeding far too slowly … and that today, many significant aspects of these Recommendations remain unimplemented.  Furthermore, in the case of some recent key national standards, e.g. British Standard BS 9999, which was published in 2008 … the NIST Recommendations were entirely ignored.

As a golden rule … National Building Codes/Regulations and National Standards … cannot, should not, and must not … be applied without informed thought and many questions, on the part of a building designer !

(b)       With the benefit of hindsight, and our practical experience in FireOx International … I also wanted to add a necessary 2011 Technical Commentary to the NIST Recommendations … highlighting some of the radical implications, and some of the limitations, of these Recommendations … in the hope of initiating a much-needed and long overdue international discussion on the subject.

Colour photograph showing the Taipei 101 Tower, in Taiwan ... which was completed in 2004. Designed by C.Y. Lee & Partners Architects/Planners, Taiwan. Click to enlarge.
Colour photograph showing the Taipei 101 Tower, in Taiwan ... which was completed in 2004. Designed by C.Y. Lee & Partners Architects/Planners, Taiwan. Click to enlarge.

” Architecture is the language of a culture.”

” A living building is the information space where life can be found.  Life exists within the space.  The information of space is then the information of life.  Space is the body of the building.  The building is therefore the space, the information, and the life.”

C.Y. Lee & Partners Architects/Planners, Taiwan

[ This is a local dialect of familiar Architectural Language.  However, the new multi-aspect language of Sustainable Design is fast evolving.  In order to perform as an effective and creative member of a Trans-Disciplinary Design & Construction Team … can Fire Engineers quickly learn to communicate on these wavelengths ??   Evidence to date suggests not ! ]

.

  2.     ‘Climate Change’ & ‘Energy Stability’ – Relentless Driving Forces for Sustainable Design !

Not only is Sustainable Fire Engineering inevitable … it must be !   And not at some distant point in the future … but now … yesterday !!   There is such a build-up of pressure on Spatial Planners and Building Designers to respond quickly, creatively, intuitively and appropriately to the relentless driving forces of Climate Change (including climate change mitigation, adaptation, and severe weather resilience) and Energy Stability (including energy efficiency and conservation) … that there is no other option for the International Fire Science and Engineering Community but to adapt.  Adapt and evolve … or become irrelevant !!

And one more interesting thought to digest … ‘Green’ is not the answer.  ‘Green’ looks at only one aspect of Sustainable Human & Social Development … the Environment.  This is a blinkered, short-sighted, simplistic and ill-conceived approach to realizing the complex goal of a Safe and Sustainable Built Environment.  ‘Green’ is ‘Sustainability’ for innocent children !!

Colour image showing the Shanghai Tower Project, in China ... which will be completed in 2014. Design by Gensler Architects & Planners, USA. Click to enlarge.
Colour image showing the Shanghai Tower Project, in China ... which will be completed in 2014. Design by Gensler Architects & Planners, USA. Click to enlarge.

.

  (a)      Organization for Economic Co-Operation & Development (OECD) – 2012’s Environmental Outlook to 2050

Extract from Pre-Release Climate Change Chapter, November 2011 …

Climate change presents a global systemic risk to society.  It threatens the basic elements of life for all people: access to water, food production, health, use of land, and physical and natural capital.  Inadequate attention to climate change could have significant social consequences for human wellbeing, hamper economic growth and heighten the risk of abrupt and large-scale changes to our climatic and ecological systems.  The significant economic damage could equate to a permanent loss in average per capita world consumption of more than 14% (Stern, 2006).  Some poor countries would be likely to suffer particularly severely.  This chapter demonstrates how avoiding these economic, social and environmental costs will require effective policies to shift economies onto low-carbon and climate-resilient growth paths.’

  (b)      U.N. World Meteorological Organization (WMO) Greenhouse Gas Bulletin No.7, November 2011

Executive Summary …

The latest analysis of observations from the WMO Global Atmosphere Watch (GAW) Programme shows that the globally averaged mixing ratios of Carbon Dioxide (CO2), Methane (CH4) and Nitrous Oxide (N2O) reached new highs in 2010, with CO2 at 389.0 parts per million (ppm), CH4 at 1808 parts per billion (ppb) and N2O at 323.2 ppb.  These values are greater than those in pre-industrial times (before 1750) by 39%, 158% and 20%, respectively.  Atmospheric increases of CO2 and N2O from 2009 to 2010 are consistent with recent years, but they are higher than both those observed from 2008 to 2009 and those averaged over the past 10 years.  Atmospheric CH4 continues to increase, consistent with the past three years.  The U.S. National Oceanic & Atmospheric Administration (NOAA) Annual Greenhouse Gas Index shows that from 1990 to 2010 radiative forcing by long-lived Greenhouse Gases (GHG’s) increased by 29%, with CO2 accounting for nearly 80% of this increase.  Radiative forcing of N2O exceeded that of CFC-12, making N2O the third most important long-lived Greenhouse Gas.

  (c)      International Energy Agency (IEA) – World Energy Outlook, November 2011

Extract from Executive Summary …

There are few signs that the urgently needed change in direction in global energy trends is underway.  Although the recovery in the world economy since 2009 has been uneven, and future economic prospects remain uncertain, global primary energy demand rebounded by a remarkable 5% in 2010, pushing CO2 emissions to a new high.  Subsidies that encourage wasteful consumption of fossil fuels jumped to over $400 billion.  The number of people without access to electricity remained unacceptably high at 1.3 Billion, around 20% of the world’s population.  Despite the priority in many countries to increase energy efficiency, global energy intensity worsened for the second straight year.  Against this unpromising background, events such as those at the Fukushima Daiichi Nuclear Power Plant and the turmoil in parts of the Middle East and North Africa (MENA) have cast doubts on the reliability of energy supply, while concerns about sovereign financial integrity have shifted the focus of government attention away from energy policy and limited their means of policy intervention, boding ill for agreed global climate change objectives.’

Colour image showing the One World Trade Center Project, in New York City (USA) ... which will be completed in 2013. Design by Skidmore Owings & Merrill, Architects/Planners, USA. Click to enlarge.
Colour image showing the One World Trade Center Project, in New York City (USA) ... which will be completed in 2013. Design by Skidmore Owings & Merrill, Architects/Planners, USA. Click to enlarge.

[ Not just in the case of Tall, Super-Tall and Mega-Tall Buildings … but the many, many Other Building Types in the Built Environment … are Building Designers implementing the 2005 & 2008 NIST WTC Recommendations … without waiting for Building and Fire Codes/Regulations and Standards to be properly revised and updated ??   Evidence to date suggests not ! ]

.

  3.     Separate Dilemmas for Client Organizations and Building Designers …

As discussed earlier in this Series … the Fire Safety Objectives of Building and Fire Codes/Regulations are limited to:

  • The protection of building users/occupants ;   and
  • The protection of property … BUT only insofar as that is relevant to the protection of the users/occupants ;

… because the function of Building and Fire Codes is to protect Society.  Well, that is supposed to be true !   Unfortunately, not all Codes/Regulations are adequate or up-to-date … as we have been observing here in these posts.

.

Just taking the Taipei 101 Tower as an example, I have very recently sent out three genuine, bona fide e-mail messages from our practice …

2011-12-08

Toshiba Elevator & Building Systems Corporation (TELC), Japan.

To Whom It May Concern …

Knowing that your organization was involved in the Taipei 101 Project … we have been examining your WebSite very carefully.  However, some important information was missing from there.

For our International Work … we would like to receive technical information on the Use of Elevators for Fire Evacuation in Buildings … which we understand is actually happening in the Taipei Tower, since it was completed in 2004.

The Universal Design approach must also be integrated into any New Elevators.

Can you help us ?

C.J. Walsh

[2012-01-10 … No reply yet !]

.

2011-12-12

Mr. Thomas Z. Scarangello P.E. – Chairman & CEO, Thornton Tomasetti Structural Engineers, New York.

Dear Thomas,

Knowing that your organization was involved in the structural design of the Taipei 101 Tower, which was completed in 2004 … and in the on-going design of many other iconic tall, super-tall and mega-tall buildings around the world … we have been examining your Company Brochures and WebSite very carefully.  However, some essential information is missing.

As you are certainly aware … implementation of the 2005 & 2008 National Institute of Standards & Technology (NIST) Recommendations on the Collapse of WTC Buildings 1, 2 & 7, in New York, on 11 September 2001 … is still proceeding at a snail’s pace, i.e. very slowly.  Today, many significant aspects of NIST’s Recommendations remain unimplemented.

For our International Work … we would like to understand how you have responded directly to the NIST Recommendations … and incorporated the necessary additional modifications into your current structural fire engineering designs.

Many thanks for your kind attention.  In anticipation of your prompt and detailed response …

C.J. Walsh

[2012-01-10 … No reply yet !]

.

2011-12-14

Mr. C.Y. Lee & Mr. C.P. Wang, Principal Architects – C.Y. Lee & Partners Architects/Planners, Taiwan.

Dear Sirs,

Knowing that your architectural practice designed the Taipei 101 Tower, which was completed in 2004 … and, later, was also involved in the design of other tall and super-tall buildings in Taiwan and China … we have been examining your Company WebSite very carefully.  However, some essential information is missing.

As you are probably aware … implementation of the 2005 & 2008 U.S. National Institute of Standards & Technology (NIST) Recommendations on the Collapse of WTC Buildings 1, 2 & 7, in New York City, on 11 September 2001 … is still proceeding at a snail’s pace, i.e. very slowly.  Today, many significant aspects of NIST’s Recommendations remain unimplemented.

For our International Work … we would like to understand how you have responded directly to the NIST Recommendations … and incorporated the necessary additional modifications into your current architectural designs.

Many thanks for your kind attention.  In anticipation of your prompt and detailed response …

C.J. Walsh

[2012-01-10 … No reply yet !]

.

So … how many Clients, or Client Organizations, are aware that to properly protect their interests … even, a significant part of their interests … it is vitally necessary that Project-Specific Fire Engineering Design Objectives be developed which will have a much wider scope ?   The answer is … not many !

How many Architects, Structural Engineers, and Fire Engineers fully explain this to their Clients or Client Organizations ?

And how many Clients/Client Organizations either know that they should ask, or have the balls to ask … their Architect, Structural Engineer and Fire Engineer for this explanation … and furthermore, in the case of any High-Rise Building, Iconic Building, or Building having an Important Function or an Innovative Design … ask the same individuals for some solid reassurance that they have responded directly to the 2005 & 2008 NIST WTC Recommendations … and incorporated the necessary additional modifications into your current designs … whatever current Building and Fire Codes/Regulations do or do not say ??   A big dilemma !

.

A common and very risky dilemma for Building Designers, however, arises in the situation where the Project Developer, i.e. the Client/Client Organization … is the same as the Construction Organization.  The Project Design & Construction Team – as a whole – now has very little power or authority if a conflict arises over technical aspects of the design … or over construction costs.  An even bigger dilemma !!

Colour image showing the Kingdom Tower Project, in Jeddah (Saudi Arabia) ... which will be completed in 2018. Design by Adrian Smith & Gordon Gill Architecture, USA. Click to enlarge.
Colour image showing the Kingdom Tower Project, in Jeddah (Saudi Arabia) ... which will be completed in 2018. Design by Adrian Smith & Gordon Gill Architecture, USA. Click to enlarge.

.

  4.     The Next Series of Posts – 2008 NIST WTC Recommendations

In the new year of 2012 … I will examine the later NIST Recommendations which were a response to the Fire-Induced Progressive Collapse of World Trade Center Building No.7.

Colour image showing the Signature Tower Project, in Jakarta (Indonesia) ... which will be completed in 2016. Design by Smallwood Reynolds Stewart Stewart Architects & Planners, USA. Click to enlarge.
Colour image showing the Signature Tower Project, in Jakarta (Indonesia) ... which will be completed in 2016. Design by Smallwood Reynolds Stewart Stewart Architects & Planners, USA. Click to enlarge.

.

  5.     Please … Your Comments, Views & Opinions ?!?

The future of  Conventional Fire Engineering ended on the morning of Tuesday, 11 September 2001, in New York City … an engineering discipline constrained by a long heritage deeply embedded in, and manacled to, an outdated and inflexible prescriptive approach to Codes/Regulations and Standards … an approach which is irrational, ignores the ‘real’ needs of the ‘real’ people who use and/or occupy ‘real’ buildings … and, quite frankly, no longer makes any scientific sense !!

On the other hand … having confronted the harsh realities of 9/11 and the Mumbai ‘Hive’ Attacks, and digested the 2005 & 2008 NIST WTC RecommendationsSustainable Fire Engineering … having a robust empirical basis, being ‘person-centred’, and positively promoting creativity … offers the International Fire Science and Engineering Community a confident journey forward into the future … on many diverse routes !

This IS the only appropriate response to the exciting architectural innovations and fire safety challenges of today’s Built Environment.

BUT … what do you think ?

.

.

END

Enhanced by Zemanta

Disability Access Certificates (DAC’s) – Parts M & B ? (II)

2009-10-18:  In everyday practice, the usual short introductory text in Technical Guidance Document M (Ireland) which refers to a linkage between ‘access and use’ of a building with ‘fire safety’ has little impact, because it is not explained … and is typically ignored.

In general … the basic problem is that this issue is hardly dealt with … at all … by Local Fire Authorities right across the country in their handling of Fire Safety Certificates … and where it does become part of the process, it receives inadequate attention.  There are exceptions.

A major drawback with the current vertical approach to our Building Regulations … each of the Parts has its own separate Supporting Technical Guidance Document … is that people are not sufficiently aware of the important horizontal linkages between the different Parts.  For example, all of the other Parts must be linked to Part D.  Quick, run to find out what Part D covers !   Another two examples … Part B must also be linked to Part A and Part M … and Part M must also be linked to Part K and Part B.

So … while grudgingly having to accept that the scope of TGD M should have some limit, under the current flawed system … a precise intervention with just one or two sentences, at critical places in the guidance text, would help to improve the overall consideration of fire safety issues, relevant to Part M, by building designers … and client or construction organizations.

Here are a Few Suggestions for Discussion …

1.  Revise Paragraph #0.6 of Draft TGD M (2009) & Add a Title …

Fire Evacuation for All

” Accessibility encompasses the full range of activity related to buildings: to approach, enter, use, egress from under normal conditions, and evacuate a building independently during a fire emergency, in an equitable and dignified manner.  Provision for access and use must, therefore, be linked to provision for fire evacuation.  For guidance on design for evacuation, reference should be made to Technical Guidance Document B (Fire Safety).”

Note:  No such guidance is contained in TGD B (2006).  It would be a great wonder if any person with a disability could actually evacuate a building which had been designed in accordance with TGD B.  To take a simple example … all of the ‘stairways’ in Table 1.5 of TGD B – Minimum Width of Escape Stairways will not facilitate contraflow or the assisted evacuation of mobility and visually impaired people.  Furthermore, those minimum widths specified in the Table may have a clear width which is 200 mm less.  See Methods of Measurement, Paragraph #1.0.10 (c) (iii) … ” a stairway is the clear width between the walls or balustrades, (strings and handrails intruding not more than 30 mm and 100 mm respectively may be ignored) ” !   What an incoherent mess !!

2.  Insert New Sentence at the End of Paragraph #1.1.1 of Draft TGD M (2009) …

Objective (Approach to Buildings)

” Consideration should be given to the use of the approach and circulation routes around a building as accessible routes to a ‘place of safety’ during a fire emergency.”

3.  Insert New Sentence at the End of Paragraph #1.2.1 of Draft TGD M (2009) …

Objective (Access to Buildings)

” Consideration should be given to the use of all entrances to a building as accessible fire exits during a fire emergency.”

4.  Insert New Paragraph at the End of Paragraph #1.3.4.1 of Draft TGD M (2009) …

Passenger Lifts

” Manual handling of occupied wheelchairs in a fire evacuation staircase, even with adequate training for everyone directly and indirectly involved, is hazardous for the person in the wheelchair and those people – minimum three – giving assistance.  The weight of an average unoccupied powered wheelchair, alone, makes manual handling impractical.  Lifts in new buildings should, therefore, be capable of being used for evacuation in a fire situation.  For guidance on the use of lifts for fire evacuation, reference should be made to Technical Guidance Document B (Fire Safety).”

5.  Insert New Paragraph and New Sentence at the End of Paragraph #1.3.4.2 of Draft TGD M (2009) …

Internal Stairs

” To allow sufficient space to safely carry an occupied wheelchair down or up a fire evacuation staircase, and to accommodate contraflow, i.e. emergency access by firefighters entering a building and moving towards a fire, while people are still evacuating from the building to a ‘place of safety remote from the building, the clear unobstructed width (exclusive of handrails and any other projections, e.g. portable fire extinguishers, notice boards, etc.) of the flight of a single, or multi-channelled, stairs should not be less than 1 500 mm.  The surface width of a flight of stairs should not be less than 1 700 mm.”

Note:  See Footnote (5) to Table 1.5 in TGD B (2006) … ” The minimum widths given in the table may need to be increased in accordance with the guidance in TGD M: Access for People with Disabilities.”   DUH ?

And …

” For the purpose of safe assisted fire evacuation of people, the rise of a step should not have a height greater than 150 mm, and the going of a step should not have a depth less than 300 mm.”

6.  Insert New Sentence at the End of Paragraph #1.5.1 of Draft TGD M (2009) …

Objective (Facilities in Buildings)

” Consideration should be given to the use of relevant facilities within a building, by people with disabilities, for the purposes of fire safety, protection and evacuation.”

7.  Insert New Sentence at the End of Paragraph #1.6.1 of Draft TGD M (2009) …

Objective (Aids to Communication)

” Consideration should be given to the use of relevant aids to communication, by people with disabilities, for the purposes of fire safety, protection and evacuation.”

Note:  More guidance could be provided under each of the individual paragraphs of Section #1.6 of Draft TGD M (2009).  See Draft International Accessibility-for-All Standard ISO 21542.

8.  Insert New Section #2.6 of Draft TGD M (2009) …

Fire Safety in Dwellings for People with Disabilities

.

.

END

Enhanced by Zemanta