Self-Regulation Is No Regulation

LEED, PassivHaus & BREEAM Housing ~ Atrocious Fire Safety !!

2016-04-11:  It Happened One Night !

And Maybe … if it hadn’t been that particular night, amidst all the festivities of New Year’s Eve 2015, we would never have heard about the Address Hotel Fire, in Dubayy (UAE).  A long search on the Internet afterwards led to the detailed, post fire analysis report on the 2014 Lacrosse Docklands Fire, in Melbourne (Australia) … followed by some more searching, and a very large can of worms opened up … similar nasty façade (external fabric) fires in many, many countries … involving large chunks of flaming debris falling from terrific heights, carried by the wind to a significant distance away from the building of fire origin.

Click to enlarge.

Click to enlarge.

Some people have tried to suggest that the only reason for these fires is inadequate building codes/regulations.  No … the reason for these fires is much more than that … it’s the ‘SYSTEM’ !   In other words, how the International Construction Sector is organized and goes about its ordinary, everyday activities and tasks.  We must also talk about poor quality design and construction … and a lack of stringent, independent enforcement of effective building codes/regulations and standards.  I have written this down many times before … Self-Regulation is NO Regulation !!

It is clearly and amply evident that Conventional Fire Engineering … as currently practiced, internationally … is no longer ‘fit for purpose’.  For discussion at SFE 2016 DUBLIN.  Check out the Fire Conference Website: … and on Twitter: @sfe2016dublin

And First Here With The Latest Conference News:

  • A Late Abstract Submission to the Dublin Fire Conference next September 2016 will deal with the topic of Façade Fires in Tall & Not-So-Tall Buildings ;   and
  • SFE 2016 DUBLIN will, from today, be working in co-operation with the biggest fire exhibition in China – CFE 2016 – 6th International Fire Safety Exhibition in Guangzhou, People’s Republic of China (PRC).



The general public was shocked and stunned, to put it mildly, by a very rapid and extensive 2015 Terraced Housing Fire on the outskirts of the Dublin Region …

Click to enlarge.

Click to enlarge.

[ See my Blog, dated 2011-04-06 … about a different, but related, 2011 Terraced Housing Fire in Terenure, a suburb of Dublin City.]

Click to enlarge.

Click to enlarge.

[ Fast forward from 2011 … overtaking Priory Hall (see my series of Blogs) … to Longboat Quay, a large residential development on the south bank of the River Liffey, which flows through the middle of Dublin.  A recent visual/surface inspection of one of the units there revealed not just a poor quality of construction … but a lack of care and attention, with a mixture of incompetence and ignorance thrown in for good measure.]

Click to enlarge.

Click to enlarge.

The 2015 Terraced Housing Fire, shown above, should not have been a surprise to the ‘System’ in Ireland.  Research carried out in the U.S.A., Belgium and The Netherlands since 2012, and a serious PassivHaus Apartment Fire in Köln, Germany, on the night of 5 February 2013  … have all shown that the modern home (highly insulated, airtight, packed with electronic equipment and wiring, and fast-burning synthetic furnishings, etc.) is the ‘perfect storm’ of fire conditions and outcomes.  More open residential design + increased fuel loads + new construction systems and materials = faster development of fires, much reduced times to flashover, far less time for occupant evacuation, particularly people with activity limitations … and shorter building collapse times.

The time to flashover in modern high-performance housing, i.e. Sustainable/Green/PassivHaus/Eco/LEED/Bio/+Energy/Low Carbon/BREEAM/Zero Carbon/SMART … can be 7 times faster than in conventional/legacy housing … or less than 5 minutes, compared with just over 29 minutes !

All of this research can be found on the Links & Docs Page of the SFE 2016 DUBLIN Website.

Let us be crystal clear … there is nothing Sustainable/Green/PassivHaus/Eco/LEED/Bio/+Energy/Low Carbon/BREEAM/Zero Carbon/SMART about the post-fire scenes of destruction shown above.  And only for the physical separation between terraces, which can be clearly seen in the last photograph … the fire would have kept spreading.



Without a balanced, proper approach to the issue of Fire Safety in this type of modern, high-performance housing … occupant safety is seriously threatened.  And if, in the event of a fire incident, the occupants are asleep … or people with activity limitations are living in the house … that threat will be extremely grave indeed.

Reality – Reliability – Redundancy – Resilience !

So … what needs to change ?   In Ireland, our immediate problem is Timber-Framed Housing (as shown above) … and the following is an outline of what must change … NOW !

  1. Party Walls, i.e. the walls separating one house from another, must be constructed of solid masonry, with a uniform and uncompromised thickness of at least 200mm … plastered on both sides, not dry-lined, for adequate smoke resistance … and be continued above the roof covering for at least 300mm.
  2. An effective Fire Detection System must be installed.  The conventional ‘package’ of one smoke detector per floor in the hallway and staircase of a standard 2 storey semi-detached house is nowhere near being adequate.
  3. An effective Residential / Domestic Fire Suppression System must be installed, e.g. low pressure water mist.  See later post, dated 2016-06-13, for a costed notional installation.
  4. If there is a Controlled Ventilation System, either mechanical or natural, in the house (for the purposes of air quality, heat exchange and energy conservation), it must be linked to the fire detection system.  In the event of a fire incident, the Ventilation System must immediately cease operation, and remain ‘fully open’.  This is in order to mitigate the build-up of high positive pressure, within a confined airtight space, caused by a developing fire … and to provide an exhaust route for smoke and toxic gases … during the short period of time prior to activation of the fire suppression system.
  5. Intermediate Timber Floors and Evacuation Routes, including fire resisting doorsets, must be reliably protected from fire and smoke.  The minimum period of fire and smoke resistance must be linked to local fire service support infrastructure.  In other words, the local fire services must be allowed sufficient time to arrive at the scene of a fire in strength … to search for any occupants still remaining in the fire building … and to bring the fire under control.
  6. Uppermost Ceilings under a trussed timber roof structure, including any trap doorsets into the roof space, must be similarly and reliably protected from fire and smoke.  Once fire enters a roof space, the light trussed timber structure will collapse within a few minutes.
  7. Front and Back Entrance/Egress Doors must be outward opening.  In the 2013 German PassivHaus Apartment Fire, the occupant found it extremely difficult to open inward opening doors and windows because of the high positive pressure caused by the developing fire.  This unusual phenomenon was confirmed in the 2015 Finnish Apartment Fire Tests, when much higher positive pressures were observed.
  8. Internal Linings of External Walls must comprise 2 layers of plasterboard, with all joints staggered … steel fixed, at not more than 150mm centres.  Once fire breaches the internal lining of an external wall, the whole building will become involved in the fire.  Horizontal and vertical fire sealing behind these linings, even if properly installed (!), are too little and too late.
  9. Frontline Firefighters must be supported by specialist structural engineering and hazard appraisal units … and light/portable/reliable Thermal Imaging Cameras must be recognized as a standard tool of firefighting.



These building types are more popularly known as Green, PassivHaus / Passive House, LEED, Eco, Bio, BREEAM, +Energy, Zero / Low / Nearly Zero Carbon, or SMART, etc., etc, etc.   In ALL of these cases, however, an Effective Residential Fire Suppression System MUST BE INSTALLED, e.g. low pressure water mist !

In everyday practice … Authorities Having Jurisdiction (AHJ’s), and the Organizations and Individuals responsible for the far-too-rapid construction of these innovative building types are either completely and blissfully ignorant, or callously and negligently in denial, about the seriously negative impacts on Occupant & Firefighter Fire Safety and Building Fire Protection.

BUT … slowly … more and more reliable evidence is being gathered !   Please visit the Links & Docs Page on: … and also view this Presentation on some very interesting 2015 Apartment Fire Tests in Finland:



In refurbishment projects where insulation is fixed to the internal surfaces of external walls … similar fire safety problems exist, and they must be solved by reviewing the full checklist above.  Refer again to the PassivHaus Apartment Fire in Köln, Germany, on the night of 5 February 2013 … and to the 2015 Apartment Fire Tests in Finland




Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

2009 Camberwell Fire – Today’s Fire Engineering Challenges

In Ireland, it is rarely the case that there is an opportunity to practice Rational, Evidence-Based Fire Engineering … and to apply its Principles in a manner which is both professional and project-specific.  The grim reality of everyday fire consultancy revolves around playing ‘cat and mouse’ with current national building and fire regulations/codes … with ‘cost effectiveness’, i.e. to achieve a defined objective at the lowest cost, or to achieve the greatest benefit at a given cost … being the real, hidden driver behind such dangerous games !   Who wants to hear that the Irish Fire Safety Certification System is little more than a charade … an elaborate, resource consuming paper exercise … made all the more meaningless because Part B: ‘Fire Safety’ (of the Second Schedule to the 1997 Building Regulations, as amended) is isolated from a necessary and vital consideration of the other Parts, particularly Parts A: ‘Structure’; D: ‘Materials & Workmanship’; K: ‘Stairways, Ladders, Ramps & Guards’; and M: ‘Access for People with Disabilities’ ?


Colour photograph showing an external view of Lakanal House, Sceaux Estate, Camberwell, London (GB) ... after the Fatal Fire which occurred at 16.19 hrs, on 3rd July 2009. The fire was caused by a faulty television set, and resulted in the loss of 6 lives, with 15 residents and 1 firefighter left injured. London Fire Brigade was required to assist the evacuation of a further 40 building occupants to safety. Along with the serious loss of life, and the large number of injured people ... over 90 families had to vacate their flats.

Colour photograph showing an external view of Lakanal House, Sceaux Estate, Camberwell, London (GB) ... after the Fatal Fire which occurred at 16.19 hrs, on 3rd July 2009. The fire was caused by a faulty television set, and resulted in the loss of 6 lives, with 15 residents and 1 firefighter left injured. London Fire Brigade was required to assist the evacuation of a further 40 building occupants to safety. Along with the serious loss of life, and the large number of injured people ... over 90 families had to vacate their flats.


Discussing the Principles of Fire Engineering … and elaborating on the significant differences between the limited Fire Safety Objectives of legal regulations/codes … and the much broader range of Fire Engineering Design Objectives intended to fully protect social wellbeing and the interests of clients/client organizations, i.e. to properly protect their asses and their assets, in the event of a fire … is a constant, tortuous, but rewarding, struggle.  Masochism does help !

However, the 2009 Fire in a High-Rise Flat Complex at Camberwell, London (GB) … from just looking at the photograph above and reading available information about the spread of fire internally … raises some challenging fire engineering issues for building designers, property managers and construction organizations.

1.  Reliability of People Strategies in a Fire Emergency ?

In spite of the People Strategies elaborated in current Fire Codes/Regulations/Standards … it is totally and utterly irresponsible to advise people to wait in their own flats/apartments during a fire incident, or to develop fire safety strategies based on this approach … unless the confidence level (of ‘Competent Persons’ in Control … managers, designers and builders … of the flat/apartment complex) with regard to the following aspects of construction is very high

  • reliability of both passive and active fire protection measures ;
  • reliability of fire compartmentation (see below) ;
  • reliability of not just the building’s structural stability, but also its serviceability, during the fire and for a minimum period of time afterwards, i.e. the ‘cooling’ phase.

Competent Person:  A person capable of making sound value judgements in the area of professional  endeavour in which he/she possesses profound knowledge, understanding and practical experience.

Fire Codes/Regulations/Standards, wherever or whatever their origin, are NOT Infallible … and it is unbelievably mind-boggling, and sad, to witness a blind and unquestioning faith in such documents !

Looking beyond the headline figure of 6 Fatalities in the 2009 Camberwell Fire … adequate attention should also be focused on the 16 Injured … comprising building occupants and firefighters … the lengthy disruption of community wellbeing resulting from the fire … 90 Families had to be re-located … and, of course, the tremendous amount of direct and indirect damage to property and the environment.  And, I wonder … how did the more vulnerable occupants … and there may also have been visitors present in the complex at the time … cope in this emergency situation ?

This is why Fire Safety, Protection and Evacuation for All must be a Priority on any ‘Sustainability’ Agenda


2.  Independent Technical Control of AHJ Construction ?

I have said this before, but it is worth repeating here again … Self-Regulation Is No Regulation !   Surely this lesson has been burnt into our souls, following the recent scandals, financial and otherwise, in Ireland ?   National and Local Authorities Having Jurisdiction (AHJ’s) … Government Departments & Agencies, Semi-State Organizations, a myriad of Qwangos, the Office of Public Works and Local Authorities are complacent, careless and stubborn concerning proper compliance with even the minimal performance requirements specified in fire regulations, codes and standards.

The 2005 & 2008 National Institute of Standards & Technology (USA) Reports on the 9-11 WTC Incident in New York presented us with some stark language … and a set of important Recommendations which must be heeded …

‘ NIST recommends that such entities be encouraged to provide a level of safety that equals or exceeds the level of safety that would be provided by strict compliance with the code requirements of an appropriate governmental jurisdiction.

To gain broad public confidence … NIST further recommends that as-designed and as-built safety be certified by a qualified third party, independent of the building owner(s).  The process should not use self-approval for code enforcement in areas including interpretation of code provisions, design approval, product acceptance, certification of the final construction, and post-occupancy inspections over the life of the buildings.’

[2005 NIST Final Report on WTC 1 & 2 Collapses – Recommendation No. 25]

Later posts, here, will examine the individual NIST Recommendations in more detail.

However … many individuals and organizations, with vested interests, are still trying to discredit and/or ignore the Recommendations contained in the 2005 & 2008 NIST Reports on the WTC 9-11 Incident.   British Standard BS 9999:2008 is a typical case in point … a document which is slowly seeping into the marrow of the Irish Fire Establishment.  The complete and abject failure to consider any of the NIST Recommendations during the long development of this British Standard, or even to reference the Reports in the Standard’s Bibliography … was an inexcusable and unforgivable technical oversight.  The result was … and remains … a sloppy, crassly inadequate, deeply flawed and discriminatory national fire safety standard.  The British Public deserves far better !

At this stage … reluctantly … I must invite the Chair of British Standards Institution Committee FSH/14, Mr. David B. Smith, to seriously re-consider his position. 

3.  Fire Resistance, Compartmentation & Fire-Induced Progressive Collapse ?

Every person participating in the design, construction, management or operation of a building, no matter how simple or complex, must have a working knowledge and proper understanding of the Fire Engineering Principle of Fire Compartmentation:

The division of a building into fire-tight compartments, by fire and smoke resisting elements of construction, in order …

–   to contain an outbreak of fire ;

–   to prevent damage, within the building, to other adjoining compartments and/or spaces ;

–   to protect a compartment interior from external fire attack, e.g. fire spread across the building’s facade or from an adjacent building ;

–   to minimize adverse, or harmful, environmental impacts outside the building.


BUTButbut … buildings are no longer designed and constructed, today, as they were in the 18th or 19th Centuries …

In a fire situation, Fire-Induced Progressive Collapse may commence before any breach of ‘integrity’ occurs in the boundary of such a Fire Compartment, i.e. the building compartment of fire origin.

Fire-Induced Progressive Collapse:  The sequential growth and intensification of distortion, displacement and failure of elements of construction in a building – during a fire and the ‘cooling phase’ afterwards – which, if unchecked, will result in disproportionate damage, and may lead to total building collapse.

… which is related to, but distinguishable from …

Disproportionate Damage:  The failure of a building’s structural system … (i)  remote from the scene of an isolated overloading action ;   and (ii) to an extent which is not in reasonable proportion to that action.

Structural Fire Engineering:  Those aspects of fire engineering concerned with structural design for fire, and the complex architectural interaction between a building’s structure and fabric, i.e. non-structure, under conditions of fire and its aftermath.


ANDAndand … a designer of a Sustainable Building will want to utilize … in order to conserve energy … natural patterns of air movement for heating or cooling.  This means that it will be necessary to have gaps between elements of construction which are continuously open … in direct conflict with the Principle of Fire Engineering just quoted above !

What happens when this sort of conflict … or lack of resolution (!) … occurs in modern, highly energy-efficient construction projects ?   At the final stages of approval/certification … the Fire Prevention Officer will insist on following the outdated prescriptive approach in his/her rulebook.  In other words, he/she will illegally apply the guidance text of Technical Guidance Document B as if it were prescriptive regulation.  Fire Compartmentation will be uncompromisingly slapped onto ‘unresolved’ areas of a completed building design … to achieve the limited Fire Safety Objectives of Building Regulations … and the fire safety related construction will probably be badly executed, anyway, because the un-supervised sub-contractors of sub-contractors of sub-contractors couldn’t care less if it goes one way or the other !   The outcome is … nobody wins !!!

In Sustainable Building Design, therefore, Fire Resistance (a ‘passive’ protection concept) must not only be extended to consider a complementary relationship with ‘active’ fire protection concepts, but be stretched … ‘intelligently’ … to embrace the concept of ‘non-construction’ …

Building Sterile Space (Fire):  An open space of sufficient and appropriate extent which is designed to retain an exceptionally low level of fire hazard and risk, and is ‘intelligently’ fitted with a suitable fire suppression system – in order to resist and control, for a specified time during a fire, the advance of heat, smoke and flame.

Fire Resistance:  The inherent capability of a building assembly, or an element of construction, to resist the passage of heat, smoke and flame for a specified time during a fire. 



Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,



February 2017
« Jan