eu law

Ireland’s Draft National Radon Control Strategy – A Fraud !!

2013-02-28:  Submissions on Ireland’s Draft National Radon Control Strategy must arrive at the Department of the Environment, Community & Local Government, our national authority having jurisdiction … by e-mail or hand delivery to either the Custom House in Dublin or the DECLG Offices in Wexford … no later than 17:30 hrs tomorrow, Friday 1 March 2013

DECLG - Draft National Radon Control Strategy Title Page (January 2013)

Ireland’s Draft National Radon Control Strategy – January 2013 Consultation

Click the Link above to read/download PDF File (425 Kb)

The Aim of this Draft Strategy, as stated on the DECLG WebSite, is to ensure that exposure to Radon Gas, which presents a significant public health problem, is addressed in an effective and co-ordinated way across all relevant public authorities through appropriate interventions.  The Draft Strategy was developed by an Inter-Agency Group comprising representatives from relevant public authorities.

.

After all of the progress made on radon protection in buildings at the end of the 1990’s and beginning of the 2000’s, it is extremely disappointing to read this miserable excuse for a strategy document.  If the general public in Ireland is under any impression that the ‘powers-that-be’ are deeply concerned about protecting our health … they are making a fatal mistake !

The complete absence of any reference to a Recommended Health-Related Radon Target Level – Safety-Related National Reference Levels which are not clearly explained will result in some injury and harm – Lack of Meaningful Consultation with, and Informed Consent of, the National Population – Horrendously Inadequate Technical Control Procedures on Irish Building Sites – RPII Recommended Indoor Radon Activity Measuring Devices having Very High Measurement Uncertainty (±30% under typical conditions of use) – A Purposeful Lack of Detailed Guidance on Exactly When and How to Measure Indoor Radon – Inadequate RPII Radon Measurement Test Reporting … are just some of the tell-tale signs for a seasoned observer.

In this regard, therefore … and let me be very clear and simple in my use of language … this Draft National Radon Control Strategy is a blatant fraud !!

Fraud:  Deliberate deception, trickery, or cheating intended to gain an advantage – An act or instance of such deception (from Latin Fraus (f): deceit, deception).

Furthermore … the Inter-Agency Group which produced this Draft National Radon Control Strategy for the DECLG Minister, Mr. Phil Hogan T.D., and Senior Civil Servants within the Department … whoever the Group’s participants are, wherever they are … should be thoroughly ashamed of themselves for being associated with this negligent act !

Negligent:  Lacking attention, care or concern.

Negligence:  A wrong whereby a person(s) is in breach of a legal duty of care, resulting in harm or injury to another person(s) … in this case, the Irish Public.

To see a complete overview on this Serious Building-Related Human Health Issue, and for information about a Far Better and More Coherent Approach to Radon Protection in Buildings which takes proper account of European Union (E.U.) legislation, e.g. the Precautionary Principle … please refer to SDI’s Corporate WebSite

NORM, Radon Gas, Radon Activity & Protection from Radon in Buildings

(It is not my intention to reproduce, here, all of the content on this WebPage as part of the Submission.)

I am also the Technical Consultant who drafted these 2 Benchmark Irish Agrément Board (IAB) Certificates for Radon Protection Measures in Buildings …

Monarflex Radon Resisting Membranes – IAB Certificate No. 98/0075

and

Radon Control Systems: Easi-Sump & Easi-Sump Cap-Link – IAB Certificate No. 01/0130

.

SDI’s Comments on Ireland’s Draft National Radon Control Strategy (NRCS)

1.   Protecting Human Health versus Reducing Risk to Safety

The following two short extracts from 1. Introduction and Background in the Draft NRCS reveal the true intent of the Inter-Agency Group …

‘ Radon gas is the greatest source of exposure to ionising radiation for the general public and is the second greatest cause of lung cancer in Ireland.  Recognising the serious health risk presented by radon, the Minister for the Environment, Community and Local Government in November 2011 established an inter-agency group to develop a National Radon Control Strategy (NRCS).’

and …

‘ During 2012 the inter-agency group developed a draft NRCS based on wide stakeholder consultation and a health economics evaluation of different radon intervention strategies.  The stakeholder consultation involved a range of individuals and bodies involved in: health care, construction, radon services, Government and academia.  The health economics evaluation was undertaken by the Radiological Protection Institute of Ireland (RPII) and Health Service Executive (HSE) with the assistance of the Health Economics Unit at the University of Oxford.  This draft strategy sets out a range of measures to reduce the risk from radon to people living in Ireland.’

Radon is a serious human health issue, and it is explained in a later section of the document 1.2 The Radon Problem in Ireland that ‘indoor radon is linked to between 150 to 200 lung cancer deaths each year in Ireland, which equates to approximately 13% of all lung cancer deaths.’

However … after the references above to ‘health economics evaluation’ (!) … to the ‘prevailing  economic situation’ (!!) in section 1.1 Public Consultation … and to ‘health economics tools’ (!!!) in section 2. Draft National Radon Control Strategy … etc … you should then sensitize yourself to the subtle change in language very early in the document … from a consideration of health protection, to reducing the risk from radon (or similar variations on that theme).

The concept of Protecting Human Health is altogether different from the concept of Assessing and Mitigating / Reducing Risk to Safety !   Please refer to SDI’s Corporate WebSite.

As far back as the end of the 1990’s … the Irish Agrément Board, which at the time included a representative from the Department of the Environment, accepted the following …

Radon Activity in Buildings – Recommended Target Health Level

Radon Activity (incl. Rn-222, Rn-220, RnD) should, on average, fall within the range of 10-40 Bq/m3, but should at no time exceed 60 Bq/m3.

This Recommended Target Health Level for Radon now also appears in International Standard ISO 21542: ‘Building Construction – Accessibility & Usability of the Built Environment’, which was published in December 2011.  Please refer to Annex B.8 – Indoor Air Quality (IAQ) in the ISO Standard.

The Draft NRCS must refer to such a Recommended Target Health Level … and it must be stated that it is National Policy to progressively reach that target by 2025 (bearing in mind the ‘prevailing economic situation’ in the country !).

Note:  In contrast to the above … 200 Bq/m3 for Residential Buildings, and 400 Bq/m3 for Workplaces … are NOT Health-Related Target Levels … they are Safety-Related National Radon Reference Levels which result in some measure of harm and injury to people … particularly children under the age of 10 years, and people with activity limitations who constantly remain indoors for prolonged periods of time.

.

2.   National Policy Priority:  ‘Real’ Protection from Radon in ‘Real’ Irish Buildings

Yes … in Ireland, we have enormous problems with regard to a lack of awareness among the general population about the serious health hazard posed by indoor radon … and the absence of proper education and training for everyone directly involved in the design, construction, management, operation, servicing or maintenance of our building stock (both new and existing).

BUT … if we are committed to providing ‘real’ radon protection in ‘real’ Irish buildings, then a practical construction-oriented approach is demanded.

This is a Key Paragraph in 2.1 Radon Prevention in New Buildings

‘ The stakeholder engagement also points to some practical difficulties associated with the implementation of the current technical guidance on radon prevention.  These difficulties relate to the correct installation of radon barriers under site conditions, protection of the integrity of radon barriers once installed and identification of radon preventive measures on site.  The stakeholder engagement also indicated the system of building control in place prior to 2012 did not provide adequate assurance that radon preventive measures had been correctly installed ‘

… which we later discover is a masterstroke of understatement and evasion, because none of these important issues are tackled head on in the document.

On the critical issue of Building Control … there is no mention of mandatory inspections of construction projects by competent Local Authority personnel.  Because … it remains the unwritten policy of Ministers and Senior Civil Servants in Ireland’s Department of the Environment, Community & Local Government (DECLG) that Local Authority Building Control Sections will be entirely ineffective.

On the other hand … will Competent Private Independent Technical Controllers be facilitated in carrying out sufficient inspections of all radon protection related works before ‘signing off’ on proper completion ???

.

3.   Regulatory Status of RPII’s Radon Prediction Maps

This is NOT a problem unique to Ireland.

The presence of the RPII Radon Prediction Maps in Technical Guidance Document C (Building Regulations), and the status they are given there … are both entirely inappropriate.

While these Maps are a useful design aid, in the case of small construction projects, they offer NO assurance of certainty to either building designers or users.  They are NOT reliable !   And the average values shown in any particular ‘box’ may actually conceal a considerable degree of variability in the radon concentrations found in completed buildings.

.

4.   SDI’s Acceptance of RPII Services

Please refer to SDI’s Corporate WebSite.

Unfortunately, until the Radiological Protection Institute of Ireland (RPII) includes proper statements of Measurement Uncertainty in its Test Reports (this is a requirement of European Standard EN ISO/IEC 17025)  … our Organization:

  • cannot recommend any RPII Radon Testing Services to 3rd Parties ;

and

  • will not accept any RPII Test Reports as proper evidence of Radon Test results.

.

C. J. Walsh – Consultant Architect, Fire Engineer & Technical Controller – Managing Director, Sustainable Design International Ltd. – Ireland, Italy & Turkey.

.

.

END

Enhanced by Zemanta

‘Sustainable Accessibility for All’ – An SDI Professional Service

2012-11-30:  Related specifically to my 2 Previous Posts on 27 November 2012 & 28 November 2012 … this is how we would like to help you … whether you are an individual, or an organization … whether you are located in Ireland, Italy or Turkey … some other part of Europe, the Arab Gulf Region, India, Japan, China … or wherever !

And … we can, if requested or necessary, work in collaboration with local partners in those different geographical regions.

Introduction

For many Weak and Vulnerable People, today’s Complex Human Environment is inaccessible and unsafe … a hostile ‘reality’ which prevents independent functioning and participation in a local community;  it is a blatant denial of their human rights.

Restrictions on Social Participation, e.g. physical barriers, sloppy user-unfriendly management procedures, discrimination, stigma, etc … also limit the Use Potential of buildings, transportation systems, public spaces and other facilities … shortening product life cycles.

These factors impose a large, negative cost burden on society generally … and on you, as an individual … or as an organization, whether private or public.  It is bad business !

.

Colour photograph showing a main circulation route at a Railway Station in Kyoto, Japan ... with combined staircase and elevators. Notice, in particular, the dual height staircase handrails, for adults and children ... the strong contrast of the floor tactile information (a 'directional' indicator leading to a 'hazard' indicator, at the top of the staircase) compared to the rest of the floor, with its broad non-slip strips ... and, finally, arrows used to control staircase circulation flows at peak periods (down to the right, up on the left). Photograph taken by CJ Walsh. 2010-04-27. Click to enlarge.
Colour photograph showing a main circulation route at a Railway Station in Kyoto, Japan … with combined staircase and elevators. Notice, in particular, the dual height staircase handrails, for adults and children … the strong contrast of the floor tactile information (a ‘directional’ indicator leading to a ‘hazard’ indicator, at the top of the staircase) compared to the rest of the floor, with its broad non-slip strips … and, finally, arrows used to control staircase circulation flows at peak periods (down to the right, up on the left). Photograph taken by CJ Walsh. 2010-04-27. Click to enlarge.

.

SDI’s Commitment to You

As a necessary response to the New Paradigm of ‘Accessibility’ mandated by the United Nations Convention on the Rights of Persons with Disabilities (CRPD), and elaborated in greater detail by International Standard ISO 21542 : 2011

WE are committed to … the implementation of a Sustainable Human Environment which is Effectively Accessible for All … through the use of innovative, person-centred and reliability-based sustainable design practices and procedures.

.

Colour photograph showing a Large Tactile Floor Plan at one of the entrances to the terminal building at Ciampino Airport in Rome, Italy. Notice, in particular, the use of an easily understandable type font combined with the high contrast between white characters and blue background ... the presentation of information in three different languages: Italian, English and Braille ... and, finally, the panel is mounted at a convenient height and angle. Photograph taken by CJ Walsh. 2011-10-26. Click to enlarge.
Colour photograph showing a Large Tactile Floor Plan at one of the entrances to the terminal building at Ciampino Airport in Rome, Italy. Notice, in particular, the use of an easily understandable type font combined with the high contrast between white characters and blue background … the presentation of information in three different languages: Italian, English and Braille … and, finally, the panel is mounted at a convenient height and angle. Photograph taken by CJ Walsh. 2011-10-26. Click to enlarge.

.

SDI’s Accessibility Services 

  • WE  will advise you on Accessibility Policy, Accessibility Strategy Development, Accessibility Implementation … and, whether you are within or from outside the European Union, on CE Marking of Accessibility Related Construction Products
  • WE  understand the process of Design, particularly the new language of Sustainable Design … and we will produce Creative Accessibility Solutions for Your Project
  • WE  are thoroughly familiar with the intricacies of Building Sites … and we will verify and/or validate Design Compliance during construction, and at project completion … and, if requested or necessary, as a completely Independent Technical Controller ; 
  • WE  communicate easily and effectively with other Professional Design Disciplines, including fire engineers … and we will act as fully participating members of Your Project Design & Construction Team

.

Sustainable Accessibility Solutions ?

  1. Are adapted to Local Geography, Climate/Climate Change, Social Need, Culture, Economy … and Severe Events (e.g. earthquakes and flooding) ;
  2. Are ‘Person-Centred’, i.e. that design process which places ‘real’ people at the centre of creative endeavours and gives due consideration to their responsible needs, and their health, safety, welfare and security in the Human Environment ;
  3. Are ‘Reliability-Based’, i.e. that design process based on practical experience, competence and an examination of real extreme events, e.g. 2001 WTC 9-11 & 2008 Mumbai Attacks, and 2011 Fukushima Nuclear Incident … rather than theory alone.

.

SDI’s Contact Information

E-Mail:  cjwalsh@sustainable-design.ie

International Phone:  +353 1 8386078   /   National Phone:  (01) 8386078

.

.

Important Note:  This Post should be read in conjunction with an earlier Post …

Sustainable Design International Ltd. – Our Practice Philosophy

It is there, not here, that we define Sustainable Human & Social Development … and describe how our Practice is responding to this open, intricate, dynamic, and still evolving concept.  The resulting transformation in how frontline services are provided to our Clients/Client Organizations ensures a much more comfortable ‘fit’ to their needs … and a greater level of protection, safety and security for society !

.

.

END

Enhanced by Zemanta

New Legal & Normative Environment for Accessibility in Europe

2012-11-27:  On Friday last, 23 November 2012, I had the great pleasure of being invited to attend the 2012 IIEA/TEPSA Irish EU Presidency Conference, which was held in Dublin Castle, Ireland.  The Programme was interesting and diverse … but lacked a vital element …

  • Session 1 – Priorities of the Irish EU Presidency ;
  • Session 2 – Economic Governance & Economic Monetary Union ;
  • Session 3 – Innovation & the Digital/Energy Interface ;
  • Session 4 – The European Union in the World.

[ IIEA – Institute of International & European Affairs ] + [ TEPSA – Trans-European Policy Studies Association ]

Colour photograph showing Tánaiste Eamon Gilmore delivering a Keynote Address, from the podium, at the 2012 Dublin IIEA/TEPSA Irish EU Presidency Conference. In the Chair - looking very pensive - is Mr. Dáithí O'Ceallaigh, Director General of the IIEA. Photograph taken by CJ Walsh. 2012-11-23. Click to enlarge.
Colour photograph showing Tánaiste Eamon Gilmore delivering a Keynote Address, from the podium, at the 2012 Dublin IIEA/TEPSA Irish EU Presidency Conference. In the Chair – looking very pensive – is Mr. Dáithí O’Ceallaigh, Director General of the IIEA. Photograph taken by CJ Walsh. 2012-11-23. Click to enlarge.

Although the serious problem of Youth Unemployment in Europe was discussed (from an economic perspective), and the Ageing Society received a passing mention … there was hardly any consideration of EU Citizenship and the many other Soft Social Issues … with, surprise-surprise, no reference at all to the Weak and Vulnerable Groups of People in all of our countries.

Furthermore … I don’t know whether they were invited to the Dublin EU Presidency Conference … and if they were, whether they couldn’t attend … but I did not notice a significant presence of representatives from Irish Disability Organizations at this important event.

Conference Delegates needed to hear that the European Union is for All of its People … not just its Citizens !   That distinction is critical.

Colour photograph showing Delegates at the 2012 IIEA/TEPSA Irish EU Presidency Conference in Dublin - described by one journalist as "a heavyweight audience of policymakers and 'leading thinkers' " - chatting over morning coffee and tea. Notice the lethal-looking metal handrail extensions in the foreground. Photograph taken by CJ Walsh. 2012-11-23. Click to enlarge.
Colour photograph showing Delegates at the 2012 IIEA/TEPSA Irish EU Presidency Conference in Dublin – described by one journalist as “a heavyweight audience of policymakers and ‘leading thinkers’ ” – chatting over morning coffee and tea. Notice the lethal-looking metal handrail extensions in the foreground. Photograph taken by CJ Walsh. 2012-11-23. Click to enlarge.

.

Which sets the scene, in an odd way, for the following e-mail message I recently sent through the EUropean Concept for Accessibility Network (EuCAN) … a network of European Accessibility Experts, co-ordinated from Luxembourg by Mr. Silvio Sagramola …

.

To EuCAN Network Members:

Silvio,

With some concern, I have been following the discussion about Access Officers.

Allow me to explain.

Once upon a time … at a meeting of the EuCAN Management Team in Luxembourg … there was an intense discussion about ‘Accessibility & Human Rights’.  Now that the U.N. Convention on the Rights of Persons with Disabilities has been adopted, entered into force, and been ratified by the European Union and many, though not all, of the EU Member States … I hope that this issue has finally been resolved.

Therefore … the immediate, Pan-European Accessibility Agenda can be found in Articles 9, 11 and 19 of the Convention … all within the context of Preamble Paragraph (g).

BUT … is any organization yet working with this Agenda … and, most importantly, implementing it properly ?

AND … let us not forget that Independent Mechanisms to Monitor Implementation are an essential component of the same Agenda (Article 33.2) … at European, national, and sub-national levels, right down to individual public and private organizations !

.

Accessibility has been clearly specified in the new International Standard ISO 21542: ‘Building Construction – Accessibility & Usability of the Built Environment’ as including … ‘access to buildings, circulation within buildings and their use, egress from buildings in the normal course of events, and evacuation in the event of an emergency‘.

The flawed framework, founded on the term ‘Access’ alone, is now obsolete.  And, therefore, the Access Officer is no more.  Let us all finally agree that the responsible individual, whether he or she, is an Accessibility Officer !

.

If the EuCAN Network is to have a useful and constructive future, this is the New Legal & Normative Environment which it must confront, carefully examine … and, in support of which, it should produce design guidance, decision-making computer software tools, etc., etc … for the practical purpose of ‘real’ implementation.

AND … any proposed EuCAN Programme of Action (2013-2015) should also include a review and updating of past publications.

.

Some Points To Note:

1.     Although the European Union ratified the U.N. CRPD on 23 December 2010 … European Commissioner Viviane Reding (Justice, Fundamental Rights & Citizenship) stated at a Dublin Meeting, in answer to my direct question, that some Member States are offering stiff resistance to integration of the Convention into the EU System.  Why isn’t the European Disability Forum on top of this ?   But also … the European Union has not yet either signed, or ratified, the Convention’s Optional Protocol.

2.     At the time of writing … Finland, Ireland, the Netherlands, and Norway (EEA) … have still not ratified the Convention.  Why not ?   Where is the outcry from disability organizations in those countries ??

In Ireland, unfortunately, national decision-makers would rather commit ritual suicide outside government buildings than acknowledge an individual citizen’s human rights.  And, if Ireland ever does ratify the Convention, proper implementation will be very problematic.

Am I exaggerating ?   Not at all … just look at how Ireland has implemented the U.N. Convention on the Rights of the Child, which it ratified back in September 1992.

3.     In EU Member States that have ratified the U.N. CRPD … the Convention is not always being implemented properly.

Towards the end of the following Blog Post … https://www.cjwalsh.ie/2011/10/public-procurement-design-for-all-its-crunch-time-folks/ … I have discussed the Concluding Observations on the Initial Report of Spain (September 2011 Session of the U.N. Committee on the Rights of Persons with Disabilities).

4.     Preamble Paragraph (g) of the U.N. CRPD is even more important, now, for this reason … the United Nations has started to develop the Post-2015 Sustainable Development Goals.  It is essential to fully integrate Ability/Disability Issues into this process.  Making a submission to the U.N. could be an interesting task for EuCAN.

5.     The Fire Safety Texts contained in ISO 21542 are essentially just a bare minimum … and they are mostly in the form of recommendations (‘should’), not requirements (‘shall’).  There is a great need to add extra detail to those texts … and to convert them into requirements.  Making a series of submissions to the International Standards Organization (ISO) should be a task for EuCAN.

Regards.

C.J. Walsh, Sustainable Design International Ltd. – Ireland, Italy & Turkey.

.

.

EUropean Concept for Accessibility (EuCAN) – Extract from 2001 Mission Statement

The fundamental basis of a European philosophy for accessibility is the recognition, acceptance and fostering – at all levels in society – of the rights of all human beings, including people with activity limitations … in an ensured context of high human health, safety, comfort and environmental protection.  Accessibility for All is an essential attribute of a ‘person-centred’, sustainable built environment.

An Effectively Accessible Europe for All

Now that a Comprehensive Legal and Normative Environment for Accessibility has finally been created in Europe … there is a vital need for EuCAN for serve … and a vital role for EuCAN to play.

However … Concerted Action must be directed at Implementation … Effective Implementation … ‘real’ accessibility which works.

Enough talk – Enough tokenism !!

.

.

END

Enhanced by Zemanta

Conventional Structural Fire Engineering Design – How Flawed ?

2012-05-18:  Déjà-vu …

” In the early hours of the morning of Saturday, 14th February 1981, a disastrous fire swept through a building called the Stardust in the North Dublin suburb of Artane during the course of a St. Valentine’s Night ‘disco’ dance.  Forty eight people were killed and one hundred and twenty eight seriously injured.  The overwhelming majority of the victims were young people. “

‘Introduction’, Report of the Tribunal of Inquiry on the Fire at the Stardust, Artane, Dublin, on the 14th February 1981.  Report dated 30 June 1982.

As a young architect in private practice … I witnessed, at first hand, the Dublin Fire ‘Establishment’ disappear from public view, without trace, after the Stardust Fire Tragedy.  It was almost impossible, for at least a year afterwards, to have a meeting with any Fire Prevention Officer in the Dublin Fire Authority.  This was a very valuable lesson.

Later, following the publication of the Stardust Tribunal Report … were its Recommendations implemented … with urgency … and conscientiously ?   No way.  For example, it was more than ten years after the Stardust Fire before an inadequate system of legal National Building Regulations was introduced in Ireland.  And to this day, the system of AHJ monitoring of construction quality, throughout the country, is weak and ineffective … lacking both competent personnel and resources !

The proof of the pudding is in the eating … and one of the results, also in Dublin, has been last year’s debacle at the Priory Hall Apartment Complex … where all of the residents had to leave their expensive apartments for fire safety (and many other) reasons.  The tip of a very large iceberg.  See my post, dated 18 October 2011 .

And this is where the problems usually begin …

” There has been a tendency among students of architecture and engineering to regard fire safety as simply a question of knowing what is required in terms of compliance with the regulations.  The recommendation of the Tribunal of Enquiry into the Summerland Disaster that those responsible for the design of buildings should treat fire safety as an integral part of the design concept itself, has not yet been reflected in the approach to the subject at university level.  There is still clearly a need for a new approach to the structuring of such courses which will in time bring to an end the attitude of mind, too prevalent at the moment, that compliance with fire safety requirements is something that can be dealt with outside the context of the overall design of the building. “

‘Chapter 9 – Conclusions & Recommendations’, Report of the Tribunal of Inquiry on the Fire at the Stardust, Artane, Dublin, on the 14th February 1981.  Report dated 30 June 1982.

This Recommendation has still not been implemented … and note the reference to the earlier fire at the Summerland Leisure Centre in 1973, on the Isle of Man, when 50 people were killed and 80 seriously injured.

Today … the same attitude of mind, described so well above, stubbornly persists in all sectors, and in all disciplines, of the International Construction Industry … even within ISO Technical Committee 92: ‘Fire Safety’ !

.

Which brings me, neatly, to the recent question posed by Mr. Glenn Horton on the Society of Fire Protection Engineers (SFPE-USA) Page of LinkedIn ( http://www.linkedin.com/groups?gid=96627 ).   As usual, the shortest questions can prove to be the most difficult to answer …

” Can you expand on, or point to where anyone has discussed, the ‘very flawed design approach’ please ? “

.

ESSENTIAL PRELIMINARIES …

     1.  Foundation Documents

I am assuming that ‘people-who-need-to know’, at international level, are familiar with the Recommendations contained in these 2 Reports …

  • NIST (National Institute of Standards and Technology).  September 2005.  Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Final Report on the Collapse of the World Trade Center Towers.  NIST NCSTAR 1   Gaithersburg, MD, USA ;

and

  • NIST (National Institute of Standards and Technology).  August 2008.  Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Final Report on the Collapse of World Trade Center Building 7.  NIST NCSTAR 1A   Gaithersburg, MD, USA ;

… and the contents of the CIB W14 Research WG IV Reflection Document … which, together with its 2 Appendices, can be downloaded from this webpage … https://www.cjwalsh.ie/progressive-collapse-fire/ … under the section headed: ‘April 2012’.

However … I am utterly dismayed by the number of ‘people-who-need-to know’ … who do not know … and have never even bothered to dip into the 2 NIST Reports … or the many long-term Post 9-11 Health Studies on Survivors which have already revealed much priceless ‘real’ information about the short and medium term adverse impacts on human health caused by fire !

CIB W14 Research Working Group IV would again strongly caution that Fire-Induced Progressive Damage and Disproportionate Damage are fundamental concepts to be applied in the structural design of all building types.

.

     2.  Technical Terminology

While attending the ISO TC92 Meetings in Thessaloniki, during the last week of April 2012, I noticed not just one reference to ‘fire doors’ in a Draft ISO Fire Standard … but many.  It surprised me, since I thought this issue had been successfully resolved, at ISO level, many years ago.  There is no such thing as a ‘fire door’ … and the careless referencing of such an object, which has no meaning, in building codes and standards has caused countless problems on real construction sites during the last 20-30 years.

Please follow this line of thought …

Fire Resistance:  The inherent capability of a building assembly, or an element of construction, to resist the passage of heat, smoke and flame for a specified time during a fire.

Doorset:  A building component consisting of a fixed part (the door frame), one or more movable parts (the door leaves), and their hardware, the function of which is to allow, or to prevent, access and egress.

[Commentary: A doorset may also include a door saddle / sill / threshold.]

Fire Resisting Doorset / Shutter Assembly:  A doorset / shutter assembly, properly installed or mounted on site, the function of which is to resist the passage of heat, smoke and flame for a specified time during a fire.

… and so we arrive at the correct term … Fire Resisting Doorset … which, as an added bonus, also alerts building designers, construction organizations, and even AHJ inspectors, to the fact that there is more involved here than merely a door leaf.

Now then, I wonder … how, in any sane and rational world, can the term Fire Resistance be used in relation to structural performance during a fire, and the cooling-phase afterwards ?   Yet, this is exactly what I read in the building codes of many different jurisdictions.  Do people understand what is actually going on ?   Or, is the language of Conventional Fire Engineering so illogical and opaque that it is nearly impossible to understand ?

And … if this problem exists within the International Fire Science & Engineering Community … how is it possible to communicate effectively with other design disciplines at any stage during real construction projects.  The artificial environments found in academia are not my immediate concern.

.

     3.  Fire Research & Development outside CIB W14 & ISO TC92

In 2012 … there is something very wrong when you have to struggle to persuade a group of people who are developing an ISO Standard on Design Fire Scenarios … that they must consider Environmental Impact as one of the major consequences of a fire to be minimized … along with ‘property losses’ and ‘occupant impact’.  This is no longer an option.

Environmental Impact:  Any effect caused by a given activity on the environment, including human health, safety and welfare, flora, fauna, soil, air, water, and especially representative samples of natural ecosystems, climate, landscape and historical monuments or other physical structures, or the interactions among these factors; it also includes effects on accessibility, cultural heritage or socio-economic conditions resulting from alterations to those factors.

So … how timely, and relevant to practitioners, are ISO Fire Standards ?   Perhaps … obsolete at publication … and not very ??

And … there is lot more to the Built Environment than buildings …

Built Environment:  Anywhere there is, or has been, a man-made or wrought (worked) intervention in the natural environment, e.g. cities, towns, villages, rural settlements, service utilities, transport systems, roads, bridges, tunnels, and cultivated lands, lakes, rivers, coasts, and seas, etc … including the virtual environment.

.

We should be very conscious that valuable fire-related research takes place outside, and unrelated to, the established fire engineering groupings of CIB W14 & ISO TC92.  But I am curious as to why this research is not properly acknowledged by, or encouraged and fostered within, the ‘system’ ?

Example A:  Responding to Recommendation 18 in the 2005 NIST WTC Report … a Multi-Disciplinary Design Team published an article in the magazine Bâtiment et Sécurité (October 2005) on The PolyCentric Tower.  I very much enjoy giving practitioners a small flavour of this work, whenever I make presentations at conferences and workshops …

Colour image, from one of my Overhead Presentations ... showing The PolyCentric Tower (2005), developed by a French Multi-Disciplinary Design Team in response to Recommendation 18 in the 2005 NIST WTC Report. Click to enlarge.
Colour image, from one of my Overhead Presentations ... showing The PolyCentric Tower (2005), developed by a French Multi-Disciplinary Design Team in response to Recommendation 18 in the 2005 NIST WTC Report. Click to enlarge.

.

Example B:  In spite of a less than helpful submission (to put it mildly) from ISO TC92 Sub-Committee 4 … ISO 21542: ‘Building Construction – Accessibility & Usability of the Built Environment’ was finally published in December 2011 … but it was developed by a Sub-Committee of ISO TC59: ‘Buildings & Civil Engineering Works’

Colour image, from one of my Overhead Presentations ... showing the design of a notional Fire Evacuation Staircase, with an adjoining Area of Rescue Assistance, which responds directly to the 2005 NIST WTC Recommendations. See Figure 62 in ISO 21542:2011. Click to enlarge.
Colour image, from one of my Overhead Presentations ... showing the design of a notional Fire Evacuation Staircase, with an adjoining Area of Rescue Assistance, which responds directly to the 2005 NIST WTC Recommendations. See Figure 62 in ISO 21542:2011. Click to enlarge.

.

With the involvement and support of ISO Technical Committee 178: ‘Lifts, Elevators & Moving Walks’ during its long gestation … ISO 21542 is now able to indicate that all lifts/elevators in a building should be capable of being used for evacuation in the event of a fire.  This is already a design feature in a small number of completed Tall Building Projects.  Once more, this is no longer an option.

In addition … if a Fire Evacuation Staircase has a minimum unobstructed width of 1.5 m (from edge of handrail on one side of the staircase to edge of handrail on the opposite side) … this will be sufficient to facilitate the following tasks …

  • Assisted Evacuation by others, or Rescue by Firefighters, for those building users who cannot independently evacuate the building, e.g. people with activity limitations … shown above, on the right, is assistance being given by three people (one at each side, with one behind) to a person occupying a manual wheelchair ;
  • Contraflow Circulation … emergency access by firefighters entering a building and moving towards a fire, while people are still evacuating from the building to a ‘place of safety’ remote from the building … shown above, bottom left, is how not to design an evacuation staircase (!) ;
  • Stretcher Lifting … lifting a mobility-impaired person, who may be conscious or unconscious, on a stretcher ;
  • Firefighter Removal & Contraflow … shown above, top left, is removal of a firefighter from a building by colleagues in the event of injury, impairment, or a fire event induced health condition … while other firefighters may still be moving towards the fire.

Note that in a Fire Evacuation Staircase … all Handrails are continuous … each Stair Riser is a consistent 150 mm high … each Stair Tread/Going is a consistent 300 mm deep … and there are No Projecting Stair Nosings.

Most importantly … in order to assign sufficient building user space in the design of an Area of Rescue Assistance … ISO 21542 also provides the following Key Performance Indicator … just one aspect of a ‘maximum credible user scenario’ …

10% of people using a building (including visitors) have an impairment, which may be visual or hearing, mental, cognitive or psychological, or may be related to physical function, with some impairments not being identifiable.

Is There Any Connection Between Examples A & B ?   There is, and it is a connection which is critical for public safety.  The following Performance Indicator illustrates the point …

Innovative Structural Design – Perimeter Core Location – Design for Fire Evacuation – Evacuation for All

” A Building must not only remain Structurally Stable during a fire event, it must remain Serviceable for a period of time which facilitates:

  • Rescue by Firefighters of people with activity limitations waiting in areas of rescue assistance ;
  • Movement of the firefighters and those people with activity limitations, via safe and accessible routes, to Places of Safety remote from the building ;
  • With an assurance of Health, Safety & Welfare during the course of this process of Assisted Evacuation. “

[Refer also to the Basic Requirements for Construction Works in Annex I of the European Union’s Construction Product Regulation 305/2011 – included as Appendix II of the CIB W14 WG IV Reflection Document.  Are the Basic Requirements being interpreted properly … or even adequately ??]

.

ANSWERS TO THE QUESTION …

The Greek Paper is included as Appendix I of CIB W14 WG IV Reflection Document … in order to show that Fire-Induced Progressive Damage is also an issue in buildings with a reinforced concrete frame structure.  It is more straightforward, here, to concentrate on buildings with a steel frame structure.

a)  Use of ‘Fire Resistance'(?) Tables for Structural Elements

We should all be familiar with these sorts of Tables.  The information they contain is generated from this type of standard test configuration in a fire test laboratory …

… and this sort of criterion for ‘loadbearing horizontal elements’ in a fire test standard …

A single isolated loaded steel beam, simply supported, is being tested.  As deflection is the only type of deformation being observed and measured … the critical temperature of the steel, i.e. the point when material strength begins to fail rapidly and the rate of beam deflection increases dramatically … is the sole focus for all stakeholders.

Using these Tables, it is very difficult to escape the conclusion that we are merely interior decorators … applying flimsy thermal insulation products to some steel structural elements (not all !) … according to an old, too narrowly focused, almost static (‘cold form’) recipe, which has little to do with how today’s real buildings react to real fires !

This ‘non-design’ approach is entirely inadequate.

.

With regard to the use of these Tables in Ireland’s Building Regulations (Technical Guidance Document B), I recently submitted the comments below to the relevant Irish AHJ.  These same comments could just as easily apply to the use of similar Tables in the Building Regulations for England & Wales (Approved Document B) …

” You should be aware that Table A1 and Table A2 are only appropriate for use by designers in the case of single, isolated steel structural elements.

In steel structural frame systems, no consideration is given in the Tables to adequate fire protection of connections … or limiting the thermal expansion (and other types of deformation) in fire of steel structural elements … in order to reduce the adverse effects of one element’s behaviour on the rest of the frame and/or adjoining non-loadbearing fire resisting elements of construction.

In the case of steel structural frame systems, therefore, the minimum fire protection to be afforded to ALL steel structural elements, including connections, should be 2 Hours.  Connections should also be designed and constructed to be sufficiently robust during the course of a fire incident.  This one small revision will contribute greatly towards preventing Fire-Induced Progressive Damage in buildings … a related, but different, structural concept to Disproportionate Damage

Disproportionate Damage

The failure of a building’s structural system  (i) remote from the scene of an isolated overloading action;  and (ii) to an extent which is not in reasonable proportion to that action.

Fire-Induced Progressive Damage

The sequential growth and intensification of structural deformation and displacement, beyond fire engineering design parameters, and the eventual failure of elements of construction in a building – during a fire and the ‘cooling phase’ afterwards – which, if unchecked, will result in disproportionate damage, and may lead to total building collapse.

Coming from this background and heritage … it is very difficult to communicate with mainstream, ambient structural engineers who are speaking the language of structural reliability, limit state design and serviceability limit states.

.

b)  NIST Report: ‘Best Practice Guidelines for Structural Fire Resistance Design of Concrete and Steel Buildings’ (NISTIR 7563 – February 2009)

At the end of Page 18 in NISTIR 7563 …

2.7.2 Multi-Storey Frame Buildings

In recent years, the fire performance of large-frame structures has been shown in some instances to be better than the fire resistance of the individual structural elements (Moore and Lennon 1997).  These observations have been supported by extensive computer analyses, including Franssen, Schleich, and Cajot (1995) who showed that, when axial restraint from thermal expansion of the members is included in the analysis of a frame building, the behaviour is different from that of the column and beam analyzed separately.

A large series of full-scale fire tests was carried out between 1994 and 1996 in the Cardington Laboratory of the Building Research Establishment in England.  A full-size eight-storey steel building was constructed with composite reinforced concrete slabs on exposed metal decking, supported on steel beams with no applied fire protection other than a suspended ceiling in some tests.  The steel columns were fire-protected.  A number of fire tests were carried out on parts of one floor of the building, resulting in steel beam temperatures up to 1000 °C, leading to deflections up to 600 mm but no collapse and generally no integrity failures (Martin and Moore 1997). “

Those were Experimental Fire Tests at Cardington, not Real Fires … on ‘Engineered’ Test Constructions, not Real Buildings !!   And … incredibly, for a 2009 document … there is no mention at all of World Trade Center Buildings 1, 2 or 7 !?!   Where did they disappear to, I wonder ?   Too hot to handle ???

Computer Model Verification and Validation (V&V) are very problematic issues within the International Fire Science and Engineering Community.  The expected outcome of a Model V&V Process, however, is a quantified level of agreement between experimental data (and, if available, real data) and model prediction … as well as the predictive accuracy of the model.

Now … please meditate carefully on the following …

” NCSTAR 1A (2008)  Recommendation D   [See also NCSTAR 1 (2005)  Recommendation 5)

NIST recommends that the technical basis for the century-old standard for fire resistance testing of components, assemblies and systems be improved through a national effort.  Necessary guidance also should be developed for extrapolating the results of tested assemblies to prototypical building systems.  A key step in fulfilling this Recommendation is to establish a capability for studying and testing components, assemblies, and systems under realistic fire and load conditions.

Of particular concern is that the Standard Fire Resistance Test does not adequately capture important thermally-induced interactions between structural sub-systems, elements, and connections that are critical to structural integrity.  System-level interactions, especially due to thermal expansion, are not considered in the standard test method since columns, girders, and floor sub-assemblies are tested separately.  Also, the performance of connections under both gravity and thermal effects is not considered.  The United States currently does not have the capability for studying and testing these important fire-induced phenomena critical to structural safety.

Relevance to WTC 7:  The floor systems failed in WTC 7 at shorter fire exposure times than the specified fire rating (two hours) and at lower temperatures because thermal effects within the structural system, especially thermal expansion, were not considered in setting the endpoint criteria when using the ASTM E 110 or equivalent testing standard.  The structural breakdowns that led to the initiating event, and the eventual collapse of WTC 7, occurred at temperatures that were hundreds of degrees below the criteria that determine structural fire resistance ratings. “

The design approach outlined in NISTIR 7563 is not only very flawed … it lacks any validity … because very relevant and important real fire data has been totally ignored.  The Cardington Experimental Fires were not all that they seemed.

.

c)  Current ISO TC92 International Case Study Comparison

Structural Fire Engineering Design of an Airport Terminal Building serving the Capital City of a large country (which shall remain nameless) … constructed using Portal Steel Frames …

My first concern is that the Structural Fire Engineering Design has been undertaken in isolation from other aspects of the Building’s Fire Engineering Design.

On Page 3 of the Case Study Report …

4.2 Objectives & Functional Requirements for Fire Safety of Structures

The fire safety objectives of the airport terminal emphasize the safety of life, conservation of property, continuity of operations and protection of the environment. “

Should these not be the Project-Specific Fire Engineering Design Objectives ?   Since when, for example, is ‘continuity of operations’ a concern in building codes ??

On Page 7 of the Case Study Report …

5.3  Identify Objectives, Functional Requirements & Performance Criteria for Fire Safety of Structure

The Fire Safety Objective of the Steel Structure:  There should be no serious damage to the structure or successive collapse in case of fire.

The Functional Requirements are defined as the followings:

(1)  Prevent or limit the structural failure in case of fire so as to prevent the fire from spreading within the compartment or to the adjacent fire compartment or the adjacent buildings (to prevent fire spread) ;

(2)  Prevent or limit the partial structural failure in case of fire so as to protect the life safety of the occupants and firefighters (to protect life safety) ;

(3)  Prevent or limit the structural deformation or collapse so as not to increase the cost or difficulties of the after-fire restoration (to reduce reconstruction cost).

One of the following Performance Requirements shall be met:

(1)  The load-bearing capacity of the structure (Rd) shall not be less than the combined effect (Sm) within the required time, that is Rd ≥ Sm.  (The maximum permitted deflection for the steel beam shall not be larger than L/400, and the maximum stress of the structure under fire conditions shall not be larger than fyT) ;   or

(2)  The fire resistance rating of the steel structure (td) shall not be less than the required fire resistance rating (tm), that is, td ≥ tm ;   or

(3)  Td – the critical internal temperature of the steel structure at its ultimate state shall not be less than Tm (the maximum temperature of the structure within required fire resistance time duration), that is Td ≥ Tm.  (300 ℃) “

Once again … we see an emphasis on critical temperature, beam deflection (only), and material strength.  L/400 is an impressive Fire Serviceability Limit State … a different world from L/20 or L/30 … but what about other important types of steel structural member deformation, e.g. thermal expansion and distortion ??

Furthermore … if there is a major fire in the area under the lower roof (see Section above) … because of structural continuity, any serious impact on the small frame will also have an impact on the large frame.  For Structural Fire Engineering reasons … would it not be wiser to break the structural continuity … and have the small and large portal frames act independently ?

It is proposed that the Portal Frames will NOT be fully fire protected … just the columns, up to a height of 8 metres only.  If ‘conservation of property’ and ‘continuity of operations’ are important fire engineering design objectives in this project … why isn’t all of the steel being fully protected ???   What would be the additional cost, as a percentage of the total project cost ?

What exactly is infallible about current Design Fires and Design Fire Scenarios ???   Not much.  And in the case of this particular building, should a ‘maximum credible fire scenario’ be at least considered ?

And … what is the fire protection material, product or system being used to protect the Portal Frames ?   Will it be applied, fixed or installed correctly ?   What is its durability ?   Will it be able to resist mechanical damage during the construction process … and afterwards, during the fire event ?   What is the reliability of this form of fire protection measure ??

So many questions …

.

.

END

Enhanced by Zemanta

Accessibility-for-All … New Context … Same Old Problems !

2012-04-21:  The context for considering and properly implementing Accessibility-for-All has changed … changed utterly … but some old problems persist, and stubbornly remain …

NEW INTERNATIONAL CONTEXT

     A.  At the time of writing, the United Nations Convention on the Rights of Persons with Disabilities (UN CRPD) has been ratified by 111 Countries and the European Union.

Concerning Accessibility of the Built Environment … UN CRPD Preamble Paragraph (g), and Articles 9 – 11 – 12 are the most immediately relevant.  These texts can be easily found elsewhere on this BLOG … please use the ‘search’ facility at the top, right-hand corner of the WebPage.

With the innovative, and internationally accepted, understanding of ‘Accessibility’ – as distinct from ‘Access’ – contained in ISO 21542 : 2011 … the concept meaning: approach and entry to a building, circulation within and use of all the building’s facilities, egress from and removal from the building’s vicinity during normal circumstances, or evacuation in the event of an emergency and movement – via a safe and accessible route – to a place of safety which is remote from the building … it is now possible to deal with Fire Evacuation of Buildings through Article 9 (Accessibility) of the UN CRPD, where it is more in scale … more at home, so to speak … rather than through Article 11 (Situations of Risk & Humanitarian Emergencies), which had to be the case before.

     B.  ISO 21542: ‘Building Construction – Accessibility & Usability of the Built Environment’ … is the important new International Standard mentioned above.  It was published in December 2011.

Ireland has no National Standard (or Code of Practice) on Accessibility.  So, in the absence of an appropriate Harmonized European Standard, ISO 21542 must take precedence over the National Standards of any other European Union Member State.

Here, however, there is a very large fly in the ointment … the guidance text in the 2010 Technical Guidance Document M has been ‘lifted’, almost en masse, from a British National Standard on ‘Access’ … not ‘Accessibility’.  And this flawed process has imported some serious errors into Irish Accessibility Design and Construction Practice … despite my warnings to the relevant authorities.  Please refer back to this post , dated 2009-06-14.

Scope of ISO 21542 : 2011

ISO 21542:2011 specifies a range of requirements and recommendations for many of the elements of construction, assemblies, components and fittings which comprise the built environment.  These requirements relate to the constructional aspects of access to buildings, to circulation within buildings, to egress from buildings in the normal course of events and evacuation in the event of an emergency.  It also deals with aspects of accessibility management in buildings.

ISO 21542:2011  contains provisions with respect to features in the external environment directly concerned with access to a building or group of buildings from the edge of the relevant site boundary or between such groups of buildings within a common site.  It does not deal with those elements of the external environment, such as public open spaces, whose function is self-contained and unrelated to the use of one specific building, nor does it deal with single family dwellings, other than those circulation spaces and fittings that are common to two or more such dwellings.

     C.  Of direct commercial interest within the European Union (and in any countries outside the EU who wish to trade with the EU and the European Economic Area) … Accessibility-Related Construction Products are now included in the framework of the (relatively) new European Union Regulation No.305/2011 of the European Parliament and of the Council, of 9 March 2011, laying down Harmonized Conditions for the Marketing of Construction Products and Repealing Council Directive 89/106/EEC.  [The old EU Directive 89/106/EEC has been repealed … it is finished, it is gone, it is no more !   There will, however, be a suitable transition period from old to new.]

Construction Product (EU Reg.305/2011)  means any product or kit which is produced and placed on the market for incorporation in a permanent manner in construction works or parts thereof and the performance of which has an effect on the performance of the construction works with respect to the basic requirements for construction works.

Construction Works (EU Reg.305/2011)  means buildings and civil engineering works.

Basic Requirement for Construction Works No. 4  in Annex I of the new EU Regulation 305/2011, states the following …

Safety and Accessibility in Use

The construction works must be designed and built in such a way that they do not present unacceptable risks of accidents or damage in service or in operation such as slipping, falling, collision, burns, electrocution, injury from explosion and burglaries.  In particular, construction works must be designed and built taking into consideration accessibility and use for disabled persons.

This is a suitable location for ‘Accessibility’ in Annex I … intimately connected to ‘Safety in Use’.  However, there is one potential drawback.  Specifying the level of safety in an EU Member State is the sole responsibility of the Authorities Having Jurisdiction (AHJ’s) in that Member State.

An Accessible Building is a Safer Building … but a Safe Building is not necessarily ‘Accessible’.  ‘Accessibility’ is a completely different concept to ‘Safety’.  EU Member States have no basis in EU Law … no justification whatever … for arbitrarily deciding on which level of ‘Accessibility’ is appropriate within their territories !

.

SAME OLD PROBLEMS

With all of this New International Context on Accessibility finally in place … I continue to encounter the same old problems …

     1.  Bad Product Design

An enormous quantity of cheap, atrociously designed … you could almost use the word ‘ugly’ … Accessibility-Related Construction Products are imported every year into Ireland, from Britain.  This is one good reason, although not a very satisfactory reason, why architects hate ‘accessibility’ in buildings.  Building users notice fittings and fixtures … and if the fittings and fixtures are ugly … the building is ugly !   But occupational therapists, for example, are also specifying these types of products every day of the week here.

This has got to stop.  Proper attention must be paid to Good Design of Accessibility-Related Construction Products.  An Accessible Building does not have to look like a Hospital Ward !   And Good Design does not have to mean ‘expensive’ !!

I have seen many well designed Accessibility-Related Construction Products, available in the EU marketplace, which have been manufactured in countries such as France, Germany, Italy, and China.

Why can we not access these products in Ireland ??

     2.  No Product Approval

The National Building Regulations/Codes of EU Member States … and all EU Safety at Work legislation … demand that building products and systems must be properly shown to be ‘fit for their intended use in the location of use’.  End of story … very simple !   Regrettably, few people take any notice of this legal requirement.

Late last year, however, I encountered a Chinese Company which manufactured some nicely designed Accessibility-Related Construction Products.  I suggested to one of their sales personnel that, in order to place their products on the market anywhere in the European Union (or the European Economic Area) … there was an urgent need to update their existing ‘CE Mark’ Product Approval Documentation.  When I checked more closely, this Documentation was dubious.  I then suggested that they should place a correct, up-to-date and relevant CE Mark on their construction products … as a matter of priority.  And I received the following reply …

” i’d like to suggest that maybe you can pay for the cost to do this CE, and after you place orders in our factory, we promise return that back to you, and if you like, maybe you can act as our agency in Ireland, will you ? “

[ The sum of money being discussed here was €1,000.]

This proposal was off-the-wall, as we say here in Ireland.  But, I found it impossible to get annoyed … because this strange and weird understanding of the CE Mark, particularly in relation to Accessibility-Related Construction Products, is rife among European Manufacturers also … and European Notified Bodies.  How crazy is that ?

Perhaps my most unusual experience, back in the mid-1990’s, was having to explain to a Manager in a TÜV Laboratory, in Germany, that a Full Test Report must be issued to a Test Sponsor … after the test(s) has/have been completed.  This task required two to three hours of heated discussion !

And … in the absence of any reference to ‘Accessibility’ in the now repealed EU Directive 89/106/EEC … I have encountered some European Manufacturers of Accessibility-Related Construction Products … who, being fully aware of the value of a CE Mark, have used the backdoor method of the EU Medical Devices Directive in order to obtain a CE Mark.  And these were definitely not medical devices !

There is no effective control over the CE Marking of Construction Products within the European Union.  This is no reason to ignore the system … or to abuse the system.

However … if many more people paid attention to the legal requirement, and necessity, of Proper Product Approval and the CE Marking of Accessibility-Related Construction Products … and the professional duty and responsibility to check that compliance/conformity is properly shown … we would have a more Accessible and much Safer Built Environment !!!

.

.

END

Enhanced by Zemanta

Unheeded Fire Hazards in New Energy Efficient Buildings !!

2012-03-29:  The relentless pressure, within the European Union (EU), to bring a greater measure of stability to imported energy supplies … to reduce our overall use of energy … to be far more efficient in the ways we consume those lesser amounts of energy … to find cleaner sources of energy to replace oil, gas, and especially coal … to comply with ambitious targets on climate change mitigation … are all pointing in one direction with regard to design and construction.  We are forced to super-insulate new buildings !

Without many people realizing it, however, we change how fire behaves in a highly insulated building … especially when insulation materials are part of the interior finishes, not carefully buried within the construction.  [Even the old Building Bye-Laws in Dublin City permitted a cavity in a masonry wall up to 150mm wide !]   And, as usual, Building and Fire Regulations are slow to catch up with these important architectural developments.

Let me show you an example of a basement car park in a new hospital (which shall remain nameless !) … where a serious ‘fire’ problem has been festering since it was opened, and occupied, a few years ago.

This hospital could be anywhere in Europe …

Colour photograph showing the basement car park in a hospital. Click this photograph, and the photographs below, to enlarge.
Colour photograph showing the basement car park in a hospital. Click this photograph, and the photographs below, to enlarge.

The ceiling height in this car park is low … approximately 2 metres above floor level.  The ceiling comprises a 6mm off-white calcium silicate board of limited combustibility (for the techies out there – this board is not ‘incombustible’, and it is not ‘non-combustible’) … above which is a 40mm rigid phenolic thermal insulation board … all fixed to the underside of a concrete floor slab.

This phenolic insulation board is very efficient … and during the normal course of events, its job is to stop the loss of heat from the hospital wards and other areas above.  A cold concrete floor is also very uncomfortable for people, i.e. hospital staff, having to walk around on it for long periods.

Because the insulation board is efficient, and it is fixed to the underside of the floor slab … in a fire situation, let’s say that a fire starts in a car … the heat from that fire will be reflected by the insulation board back downwards.  The result:  the fire will be encouraged to spread much more quickly to neighbouring vehicles.  And so, in a very short time, we will have a much larger fire … and a much more intense fire … which will be far more difficult to control and extinguish, when the fire services eventually arrive on the scene.

.

There are a Number of Twists in This Story …

     1.  For all sorts of normal reasons, there are service penetration openings in the car park ceiling shown above (some small and some large), especially in a hospital which is highly serviced … the overall approach to fire and smoke sealing in this new building is not the best … and workmanship is poor …

… which, together, all mean that it will be easy for fire and smoke to spread upwards into the hospital wards and other areas … in the event of a fire emergency.

In a hospital, not everybody is alert and mobile.  It will be difficult to evacuate some people … and it will be nearly impossible, because of their health condition, to evacuate others.  In order for a fire engineering strategy of horizontal evacuation to a ‘safer’ part of the same building to be successfully put into effect during an emergency … it is imperativethat the level of passive protection from fire and smoke provided is high … much higher, here, than in the case of an average office building, for example.  AND … it is criticalthat this high level of protection from fire and smoke is reliable.

In this new hospital building … the photographic evidence clearly shows that both of these criteria have not been met.

.

     2.  Another twist in the story concerns the rigid phenolic thermal insulation board used in the car park ceiling … which, as the evidence also shows, is exposed to direct view in many places …

In a short, brochure-type document produced by the European Phenolic Foam Association (EPFA): ‘Phenolic Foam Insulation – The Ultimate Insulation System for the Construction & Building Services Industry’, the following is stated with regard to the fire performance of this material …

‘ Toxic gas emission from phenolic foam is generally limited to carbon dioxide and carbon monoxide with very low levels of other gases.’

However, in a report produced by the National Research Council of Canada: ‘Toxicity and Smoke Aspects of Foamed Plastic Insulation – An Annotated Bibliography’ … the following abstracts can be found …

  • Toxicity of Off-Gases from Phenolic Rigid Foam

‘ A reference sample of phenolic rigid foam was evaluated for toxicity of off-gases, using various test conditions in the NASA-USF-PSC toxicity screening test method.  Test results show that the response of this material to the various test conditions is similar to that exhibited by the majority of other materials previously evaluated by this method.  That is, animal response times generally decreased with increasing fixed temperature, and with increasing airflow rate under rising temperature conditions.  The authors suggest that formaldehyde is one of the toxicants present although the amount of CO produced at 600°C or higher was enough to be lethal by itself.

  • Toxicity of Off-Gases from Thermal Insulation

‘ Toxicity test data on the off-gases from various thermal insulation materials are presented in this paper.  Under rising temperature without forced airflow test conditions, phenolic foams exhibited the shortest times to death, while polyisocyanurate, polyurethane and polystyrene foams exhibited the longest times to death.  The introduction of airflow significantly reduced time to death, apparently due to a higher degree of oxidation and more rapid delivery of toxicants.  The authors conclude that under the particular test conditions, plastic thermal insulations appear to exhibit less toxicity than cellulosic board and cellulose insulation, with polyimide and phenolic foams being the exceptions.

  • Relative Flammability and Toxicity of Thermal Insulation

‘ Relative flammability and relative toxicity data are presented for 30 samples of thermal insulation materials.  There appears to be no inherent, necessary compromise between flammability and toxicity in the selection of materials.  Cellulosic and plastics insulations appear to represent significantly different combinations of flammability and toxicity hazards, and require different approaches when planning and designing applications.  Polyurethane foam appeared to be significantly less toxic and slightly less flammable than wood and other cellulosic materials.  Polyisocyanurate foam seemed to be more toxic than polyurethane foam but still less toxic than the cellulosic materials.  Polystyrene foam exhibited the longest time to death while phenolic foam showed the second shortest time to death among the group of rigid foams evaluated.

  • Carbon Monoxide Production from Overheated Thermal Insulation Materials

‘ Carbon monoxide yields were obtained for selected thermal insulation materials.  The data are presented and discussed in this paper.  Among the rigid foamed plastics, phenolic gave the highest yield of CO under a rising temperature and no airflow test conditions.  Polyurethane foams based on propoxylated aromatic amino polyol appeared to produce less CO than polyurethane foams based on propoxylated trimethylolpropane polyol.  Under fixed temperatures of 800°C without airflow test conditions, similar results were obtained for the rigid foamed plastics.’

  • Toxicity of Pyrolysis Gases from Phenolic and Isocyanurate Rigid Foams

‘ Special reference samples of phenolic and isocyanurate rigid foams were evaluated for toxicity of pyrolysis gases, using 6 different test conditions of the USF toxicity screening test methods.  Under rising temperature conditions, phenolic foam appeared to be consistently more toxic than the isocyanurate foam.  CO level appears to be the factor, which is twice as high from the phenolic foam.  The temperatures corresponding to the times to death indicate that the toxicants were evolved below 500°C for phenolic and below 640°C for isocyanurate.  These are in agreement with that of the University of Pittsburgh (UP) data.  At a fixed temperature of 800°C, there appeared to be no difference in toxicity between the phenolic and isocyanurate foams, although the former tended to produce more carbon monoxide.’

  • Toxicity of Pyrolysis Gases from Phenolic, Isocyanurate and Polystyrene Rigid Foam Insulation

‘ Samples of phenolic, isocyanurate, and polystyrene rigid foam insulation were evaluated for toxicity of pyrolysis gases, using four different test conditions of the toxicity screening test method developed at the University of San Francisco.  The test conditions were 200 to 800°C rising temperature and 800°C fixed temperature, each without forced airflow and with 1 L/min airflow.  On the average over these four particular test conditions, phenolic foam appeared to exhibit the greatest toxicity and polystyrene foam appeared to exhibit the least toxicity.

.

As already discussed in an  earlier post , dated 2011-01-13 … we know that Carbon Monoxide (CO) is an odourless, colourless and toxic gas … and because it is impossible to see, taste or smell the toxic fumes, CO can kill before you are aware it is there.

So … it will be easy for Fire, Visible Smoke and Carbon Monoxide to spread upwards into the hospital wards and other areas of this building … in the event of a fire emergency.

.

This Hospital’s ‘Fire’ Problem & Its Solution

The ‘fire’ problem in this hospital has been allowed to fester for a number of years because the issues shown in the photographs above are either inadequately addressed … or not addressed at all … in Ireland’s Technical Guidance Document (TGD) B … a document which is intended merely to present some supporting guidance for operating Part B: ‘Fire Safety’, in the 2nd Schedule of the Building Regulations.

Unfortunately, all parties directly responsible for this hospital debacle are under the very mistaken impression that the guidance in Technical Guidance Document B is prescriptive regulation.  This is a major error !   Furthermore … TGD B is fundamentally flawed … and it is particularly inadequate when the building type is a health facility.

To Correct This ‘Fire’ Problem … a Fire Suppression System should immediately be installed in the basement car park.  At the same time, if not before … ALL Service Penetration Openings in the concrete floor slab should be properly sealed so that, during a fire incident, the passage of fire and smoke and CO into building spaces above the slab will be prevented.  And … the quality of workmanship, on site, must be high !

An appropriate number of Carbon Monoxide Detectors should be installed in the hospital wards and other areas above the concrete floor slab.

.

The ‘Institutional’ Problem

The procedure of having to submit so-called Compliance Reports with applications for Fire Safety Certificates, in Ireland, only confirms … and reinforces … the very mistaken impression in everybody’s minds that the guidance in Technical Guidance Document B is prescriptive regulation.

In the case of a different hospital … let me give you an example of a text contained in one such Compliance Report … submitted to an Irish Local Authority, sometime during 2004 …

Single Steps at Final Exit Doors

It is noted that Clause 1.4.3.4 of TGD-B is ambiguous vis-à-vis steps located on the line of final exit doors, i.e. as opposed to a condition where there is a step beyond the line of a door.  Accordingly, it is reasonable and appropriate to make reference to the current England and Wales Approved Document B (2000 Edition) for guidance on this issue in so far as Technical Guidance Document B is based on an early draft of the Approved Document.  It is noted that the UK AD-B in Clauses 6.15 and 6.21 specifically allow single steps at final exits provided they are located on the line of the doorway in question.  Furthermore, the recently issued Northern Ireland Technical Bulletin E (1994) also allows such steps, subject to the riser not exceeding 180mm.  On the basis of the foregoing, single steps are considered acceptable at the final exit doors subject to the riser not exceeding 180mm and the step being located on the line of the door.

This is mindless, incompetent nonsense … and it was accepted by the Local Authority.

How often, anymore, does anybody encounter a step … 180mm high, or of any height … at the front entrance to a new building ?   Building designers have finally understood the message that new buildings must be accessible-for-all … and a single step, in any situation, is a trip or a fall accident waiting to happen.  Now imagine the situation where people are attempting to evacuate an average office building, for example, during a fire emergency … and they encounter a single step at the final fire exit !?!   Now really stretch your imagination … and imagine where people are trying to evacuate a hospital !!??!!

FUBAR !!

The System is not only entirely dysfunctional … it is corrupt !

.

.

END

 

Enhanced by Zemanta

2012 Review of Part B & TGD B – Irish Building Regulations

2012-03-02:  Please bear with me while I update you at the start of this post … rather than at the end, which would be more usual here … and logical.

[ In Ireland … a related problem, which continues to fester and cause a great nuisance in an everyday work environment … concerns the lack of proper, i.e. formal, recognition of electronic communications, and information in an electronic format, by public and private organizations … in spite of the following very clear legal text …

2000 Electronic Commerce Act (No. 27 of 2000)

Section 9 – Electronic Form not to Affect Legal Validity or Enforceability

Information (including information incorporated by reference) shall not be denied legal effect, validity or enforceability solely on the grounds that it is wholly or partly in electronic form, whether as an electronic communication or otherwise. ]

.

Yesterday afternoon (1 March 2012), we received the following e-mail communication from the Department of Environment, Community & Local Government (DECLG)

Folks,

Could you please send me your submissions in either Microsoft Word or Excel as it it easier to copy and paste into the format that is required , it is proving rather difficult to copy from a PDF document.

Thank You

Claire Darragh, Architecture / Building Standards, DECLG.

.

I immediately replied …

Dear Claire,

Further to your informal e-mail message, which we received just a short while ago …

Please note that this is not an acknowledgement that the FireOx International Submission was received by the Department … and we certainly do not wish that you copy and paste anything relating to its contents anywhere else.

IF this is a Proper Public Consultation Process … you must adapt internal DECLG systems to suit the Submissions !   We will be communicating with the Minister’s Office concerning this issue.

Once again, I would ask you to properly acknowledge receipt of our Submission, dated 2012-02-14.

.

In connection with the original FireOx International Submission … I would also like to take this opportunity to advise you that:

  • Due to an error in ISO (International Standards Organization) … the publication of ISO 21542: ‘Building Construction – Accessibility and Usability of the Built Environment’, on 12 December 2011, was not notified to people directly involved in its development and drafting, or to the participating national standards organizations ; 

and

  • In order to avoid the wide confusion which the term ‘Fire-Induced Progressive Collapse’ is continuing to cause at international level … the preferred term is now Fire-Induced Progressive Damage.

.

I have amended our Submission accordingly.

Kind regards.

C. J. Walsh, FireOx International – Ireland, Italy & Turkey.

.

.

2012-02-18:  The following is the text of  FireOx International’s Submission, dated 14 February 2012, to the Department of the Environment, Community & Local Government (DECLG) in Dublin … concerning the current review of the Irish Building Regulations Part B & TGD B … including, for good measure, some initial and very pertinent comments on the Irish Building Control Regulations.

None of these comments will come as any surprise to regular visitors here.

It should also be noted that the same comments are just as relevant in the case of the British (England & Wales) Building Regulations, Part B and Approved Document (AD) B !

.

Ms. Claire Darragh, Architecture & Building Standards Section, DECLG.

Dear Claire,

Thank you for this opportunity to advise the Department on some urgent and necessary improvements to Part B: ‘Fire Safety’ of the 2nd Schedule to the Building Regulations in Ireland … and its supporting Technical Guidance Document (TGD) B.

1.  Some Initial Comments

  • The continuing debacle of the Priory Hall Apartment Complex, in Donaghmede Dublin 13, is just the tip of a very large iceberg in Ireland.  Yet, when we now hear that there will be a ‘risk-based’ approach to Septic Tank Inspections, instead of an approach which involves inspecting all septic tanks … independently, competently and thoroughly … it is clear that the Minister, and senior officials in his Department, have failed to learn any lessons from ‘Priory Hall’.

What was happening on Irish construction sites during the Celtic Tiger boom years … has been happening for twenty years all over the country … more precisely, since the introduction of legal national building regulations in 1991, with NO effective building control … and, before that again, in those parts of the country outside of the major urban areas having legal building bye-laws AND effective building control, i.e. mandatory inspections by competent local authority personnel at the foundation level and drainage level of ALL projects … and, depending on the type of project, occasional or frequent inspections above ground level.

Over the years, local authority officials who carried out building bye-law inspections accumulated a considerable wealth of knowledge and understanding about local construction conditions and practices.  This valuable resource, widely used by the construction industry at the time, has now been diluted and discarded.

PLEASE LEARN THE LESSONS FROM ‘PRIORY HALL’ !!

In connection with ALL Applications for Fire Safety Certificates (Part B) and Disability Access Certificates (Part M) … competent and thorough inspections must, from now on, be carried out by local authority personnel to confirm proper implementation of Part B & M, respectively, of the 2nd Schedule to the Building Regulations.

Furthermore … while on site, local authority personnel must not be discouraged, or restricted, from dealing with any other Parts of the 2nd Schedule to the Building Regulations.  Under the present dysfunctional system, important horizontal linkages between different Parts of the 2nd Schedule are being widely disregarded and ignored, e.g. between Parts B & D, between Parts B & M, and between Parts B & A … or between Parts M & D, etc., etc !

  • European Union (EU) Council Directive 89/106/EEC has been repealed … and, instead, we now have EU Regulation No 305/2011 of the European Parliament and of the Council, of 9 March 2011, laying down Harmonised Conditions for the Marketing of Construction Products.

Unlike the earlier EU Directive … this Regulation, applicable in all EU Member States, is binding in its entirety.

And although Annex I of EU Regulation 305/2011 will enter into force from 1 July 2013 … the Department should now prepare for, and slowly begin the process of, incorporating all of the Annex I Basic Requirements for Construction Works into the 2nd Schedule of the Irish Building Regulations.

SEE BELOW …

.

2.  Firefighter Safety

Fully consistent with Basic Requirement for Construction Works 2(e), in Annex I of EU Regulation No. 305/2011 … Revise Part B Requirement 5 to read as follows …

B5  Firefighter Safety, and Access and Facilities for the Fire Service

A building shall be so designed and constructed that the safety of firefighters is adequately considered and, in the event of an outbreak of fire, that there is adequate provision for access for fire appliances and such other facilities as may be required to assist the fire service in the protection of life and property.

Two examples of issues which should be highlighted in a relevant revision/addition to TGD B’s Guidance Text:

  • The incorporation, in building designs, of alternative safe means of approach towards the scene of a fire by firefighters ;
  • The provision of wider staircases in buildings in order to facilitate the recovery of an injured/impaired firefighter during the course of firefighting operations.

.

3.  Protection of Vulnerable Building Users from Fire

The European Union ratified the United Nations Convention on the Rights of Persons with Disabilities (CRPD) on 23 December 2010.  Ireland has not yet ratified the Convention.

However … fully consistent with Ireland’s legal obligation, under Article 4.3 of the Treaty on European Union (TEU), to co-operate fully with EU Institutions in their implementation of this UN Convention … Revise Part B Requirement 1 to read as follows …

B1  Means of Evacuation in the Event of an Outbreak of Fire

A building shall be so designed and constructed that the protection of vulnerable building users is adequately considered and, in the event of an outbreak of fire, that there are adequate and accessible means of evacuation from the building to a place of safety remote from the building, capable of being safely and effectively used.

[ Use of the word ‘escape’, in the context of emergencies, should be strongly discouraged at all times. ]

Concerning TGD B’s Guidance Text … reference to ISO 21542: ‘Building Construction – Accessibility and Usability of the Built Environment’ will be more than sufficient.

.

Specifically relating to Adequate Protection of Vulnerable Building Users from Fire

NOTE WELL THAT BS 9999 (AND BS 5588:PART EIGHT)  IS (ARE)  ENTIRELY UNFIT FOR PURPOSE !!

Please carefully examine the attached PDF File – My Note for the National Standards Authority of Ireland:  ‘BS 9999:2008 & BS 8300:2009 – Impacts on Accessibility Design in Ireland & Implications for ISO Accessibility & Fire Safety Standards’ , dated June 2009.

.

4.  TGD B’s Appendix A – Performance of Materials and Structures

2 Important Notes should be added to Paragraph A21 – Structural Fire Design

  • In complying with Part B, reference should also be made to Part A of the 2nd Schedule of the Building Regulations, particularly Requirement A3 – Disproportionate Collapse ;

and

  • In order to show that a Fire Protection Material/Product/System for Structural Elements properly complies with Part D … it is also necessary, besides showing that it has been adequately fire tested, to show that the material/product/system is durable over a specified, reasonably long life cycle … and that it can adequately resist mechanical damage during construction of the building and, in the event of an outbreak of fire, during the course of that fire incident.

.

Specifically relating to Steel Structural Performance in Fire

You should be aware that Table A1 and Table A2 are only appropriate for use by designers in the case of single, isolated steel structural elements.

In steel structural frame systems, no consideration is given in the Tables to adequate fire protection of connections … or limiting the thermal expansion (and other types of distortion) in fire of steel structural elements … in order to reduce the adverse effects of one steel element’s behaviour on the rest of the frame and/or adjoining non-loadbearing fire resisting elements of construction.

In the case of steel structural frame systems, therefore, the minimum fire protection to be afforded to ALL steel structural elements, including connections, should be 2 Hours.  Connections should also be designed and constructed to be sufficiently robust during the course of a fire incident.  This one small revision will contribute greatly towards preventing Fire-Induced Progressive Damage in buildings … a related, but different, structural concept to Disproportionate Damage …

Disproportionate Damage

The failure of a building’s structural system  (i) remote from the scene of an isolated overloading action;  and (ii) to an extent which is not in reasonable proportion to that action.

Fire-Induced Progressive Damage

The sequential growth and intensification of structural distortion and displacement, beyond fire engineering design parameters, and the eventual failure of elements of construction in a building – during a fire and the ‘cooling phase’ afterwards – which, if unchecked, will result in disproportionate damage, and may lead to total building collapse.

.

With regard to the above … please carefully examine these 2 Series of Posts on FireOx International’s Technical Blog ( www.cjwalsh.ie ), beginning on the dates indicated …

  • 2011-10-25:  NIST’s (2005) Recommendations on the 9-11 WTC Building Collapses … GROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30) ;

and

  • 2012-01-18:  Progressive Collapse of WTC 7 – 2008 NIST Recommendations – Part 1 of 2 … GROUP 1. Increased Structural Integrity – Recommendation A … and GROUP 2. Enhanced Fire Endurance of Structures – Recommendations B, C, D & E (out of 13).

.

5.  TGD B’s Appendix F – Reference Standards

Add this Important New Standard …

  • ISO 21542 : 2011     Building Construction – Accessibility and Usability of the Built Environment

.

6.  TGD B’s Appendix G – Reference Publications

Add these Two Important Publications …

  • NIST (National Institute of Standards and Technology).  September 2005.  Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Final Report on the Collapse of the World Trade Center Towers.  NIST NCSTAR 1.  Gaithersburg, MD, USA.

and

  • NIST (National Institute of Standards and Technology).  August 2008.  Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Final Report on the Collapse of World Trade Center Building 7.  NIST NCSTAR 1A.  Gaithersburg, MD, USA.

.

Should you wish to receive further information on any of my comments … please consult FireOx International’s Technical Blog at  www.cjwalsh.ie … or contact me directly.

Please acknowledge receipt of this e-mail communication.

.

Kind regards.

C. J. Walsh, FireOx International – Ireland, Italy & Turkey.

.

.

END

Enhanced by Zemanta

NIST WTC Recommendations 21-24 > Improved Firefighting

Previous Posts in This Series …

2011-10-25:  NIST’s Recommendations on the 9-11 WTC Building Collapses … GROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30)

2011-11-18:  NIST WTC Recommendations 4-7 > Structural Fire EnduranceGROUP 2.  Enhanced Fire Endurance of Structures – Recommendations 4, 5, 6 & 7

2011-11-24:  NIST WTC Recommendations 8-11 > New Design of StructuresGROUP 3.  New Methods for Fire Resisting Design of Structures – Recommendations 8, 9, 10 & 11

2011-11-25:  NIST WTC Recommendations 12-15 > Improved Active ProtectionGROUP 4.  Improved Active Fire Protection – Recommendations 12, 13, 14 & 15

2011-11-30:  NIST Recommendations 16-20 > Improved People EvacuationGROUP 5.  Improved Building Evacuation – Recommendations 16, 17, 18, 19 & 20

.

2011-12-04:  SOME PRELIMINARY COMMENTS …

  1.     Such is the pervasively high level of both direct and indirect fire losses, not all of which have yet been identified … that a force of committed firefighters, having sufficient numbers and properly trained and equipped, is a valuable social asset in any community … and one not to be weakened or diluted easily.

  2.     Lack of discipline among firefighters was an issue during the day of 9-11 (11th September 2011) in New York …

In real life or death situations, however, discipline is essential … but competent and efficient command, control and co-ordination … facilitated by reliable systems of communication (human and electronic) … are critical.

And accurate, real time information about what is happening at a building fire incident of whatever scale … i.e. situation awareness … is a tool which propels forward and encourages the effective functioning of both the firefighter and the user/occupant evacuating the building.

  3.     A serious gap, internationally … a deep cavern … in the awareness, training and education of firefighters at all levels … is the issue of ‘disability’ and the varying range of abilities in a typical building user/occupant profile.

It is not fully appreciated by firefighters that certain people may die if placed in a standard fireman’s lift position … or, if shouted and screamed at, many people may have no understanding whatever of the firefighter’s intended meaning … or that, in order for everyone to reach a place of safety, it is necessary for firefighters to ensure that safe, accessible routes from the building (i.e. clear of all obstacles, e.g. fire hose lines) are prepared for, thoroughly, in advance of any fire incident … and actually provided should one occur.

Panic attacks during an emergency do exist !   Standard movement times for people evacuating do not exist !!   And … firefighters may themselves become impaired during a building fire incident !!!

  4.     As for building designers … where do I even start ??   Much could, and should, be done in the design and initial construction of a building to assure firefighter safety.  But … where does any requirement to consider this issue appear in national building codes/regulations ??

I have already discussed this matter in relation to European Union (EU) Regulation 305/2011 on Construction Products, where such a requirement is contained in Basic Requirement for Construction Works 2: ‘Safety in Case of Fire’ (Annex I).

.

2005 NIST WTC RECOMMENDATIONS

GROUP 6.  Improved Emergency Response

Technologies and procedures for emergency response should be improved to enable better access to buildings, response operations, emergency communications, and command and control in large-scale emergencies.

NIST WTC Recommendation 21.

NIST recommends the installation of fire-protected and structurally hardened elevators to improve emergency response activities in tall buildings by providing timely emergency access to responders and allowing evacuation of mobility-impaired building occupants.  Such elevators should be installed for exclusive use by emergency responders during emergencies.*  In tall buildings, consideration also should be given to installing such elevators for use by all occupants.  NIST has found that the physiological impacts on emergency responders of climbing numerous (e.g. 20 or more) storeys makes it difficult to conduct effective and timely firefighting and rescue operations in building emergencies without functioning elevators.  The use of elevators for these purposes will require additional operating procedures and protocols, as well as a requirement for release of elevator door restrictors by emergency response personnel.

[ * F-44  The access time for emergency responders, in tall building emergencies where elevators are not functioning and only stairways can be used, averages between 1 minute and 2 minutes per floor, which, for example, corresponds to between 1½ and 2 hours (depending on the amount of gear and equipment carried) to reach the 60th floor of a tall building.  Further, the physiological impact on the emergency responders of climbing more than 10 to 12 floors in a tall building makes it difficult for them to immediately begin aggressive firefighting and rescue operations.]

Affected Standards:  ASME A 17, ANSI 117.1, NFPA 70, NFPA 101, NFPA 1221, NFPA 1500, NFPA 1561, NFPA 1620, and NFPA 1710.  Model Building and Fire Codes:  The standards should be adopted in model building and fire codes by mandatory reference to, or incorporation of, the latest edition of the standard.

NIST WTC Recommendation 22.

NIST recommends the installation, inspection, and testing of emergency communications systems, radio communications, and associated operating protocols to ensure that the systems and protocols:  (1) are effective for large-scale emergencies in buildings with challenging radio frequency propagation environments;  and (2) can be used to identify, locate, and track emergency responders within indoor building environments and in the field.  The federal government should co-ordinate its efforts that address this need within the framework provided by the SAFECOM programme of the Department of Homeland Security.

a.     Rigorous procedures, including pre-emergency inspection and testing, should be developed and implemented for ensuring the operation of emergency communications systems and radio communications in tall buildings and other large structures (including tunnels and subways), or at locations where communications are difficult.

b.     Performance requirements should be developed for emergency communications systems and radio communications that are used within buildings or in built-up urban environments, including standards for design, testing, certification, maintenance, and inspection of such systems.

c.     An interoperable architecture for emergency communication networks – and associated operating protocols – should be developed for unit operations within and across agencies in large-scale emergencies.  The overall network architecture should cover local networking at incident sites, dispatching, and area-wide networks, considering: (a) the scale of needed communications in terms of the number of emergency responders using the system in a large-scale emergency and the organizational hierarchy; and (b) challenges associated with radio frequency propagation, especially in buildings; (c) interoperability with existing legacy emergency communications systems (i.e. between conventional two-way systems and newer wireless network systems); and (d) the need to identify, locate, and track emergency responders at an incident site.

Affected Standards:  FCC, SAFECOM, NFPA Standards on Electronic Safety Equipment, NFPA 70, NFPA 297, and NFPA 1221.  Model Building Codes:  The standards should be adopted in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.

NIST WTC Recommendation 23.

NIST recommends the establishment and implementation of detailed procedures and methods for gathering, processing, and delivering critical information through integration of relevant voice, video, graphical, and written data to enhance the situational awareness of all emergency responders.  An information intelligence sector* should be established to co-ordinate the effort for each incident.

[ * F-45  A group of individuals that is knowledgeable, experienced, and specifically trained in gathering, processing, and delivering information critical for emergency response operations, and is ready for activation in large and/or dangerous events.]

Affected Standards:  National Incident Management System (NIMS), NRP, SAFECOM, FCC, NFPA Standards on Electronic Safety Equipment, NFPA 1221, NFPA 1500, NFPA 1561, NFPA 1620, and NFPA 1710.  Model Building Codes:  The standards should be adopted in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.

NIST WTC Recommendation 24.

NIST recommends the establishment and implementation of codes and protocols for ensuring effective and uninterrupted operation of the command and control system for large-scale building emergencies.

a.     State, local, and federal jurisdictions should implement the National Incident Management System (NIMS).  The jurisdictions should work with the Department of Homeland Security to review, test, evaluate, and implement an effective unified command and control system.  NIMS addresses interagency co-ordination and establishes a response matrix – assigning lead agency responsibilities for different types of emergencies, and functions.  At a minimum, each supporting agency should assign an individual to provide co-ordination with the lead agency at each incident command post.

b.     State, local, and federal emergency operations centres (EOC’s) should be located, designed, built, and operated with security and operational integrity as a key consideration.

c.     Command posts should be established outside the potential collapse footprint of any building which shows evidence of large multi-floor fires or has serious structural damage.  A continuous assessment of building stability and safety should be made in such emergencies to guide ongoing operations and enhance emergency responder safety.  The information necessary to make these assessments should be made available to those assigned responsibility (see related Recommendations 15 and 23).

d.     An effective command system should be established and operating before a large number of emergency responders and apparatus are dispatched and deployed.  Through training and drills, emergency responders and ambulances should be required to await dispatch requests from the incident command system and not to self-dispatch in large-scale emergencies.

e.     Actions should be taken via training and drills to ensure a co-ordinated and effective emergency response at all levels of the incident command chain by requiring all emergency responders that are given an assignment to immediately adopt and execute the assignment objectives.

f.     Command post information and incident operations data should be managed and broadcast to command and control centres at remote locations so that information is secure and accessible by all personnel needing the information.  Methods should be developed and implemented so that any information that is available at an interior information centre is transmitted to an emergency responder vehicle or command post outside the building.

Affected Standards:  National Incident Management System (NIMS), NRP, SAFECOM, FCC, NFPA Standards on Electronic Safety Equipment, NFPA 1221, NFPA 1500, NFPA 1561, NFPA 1620, and NFPA 1710.  Model Building Codes:  The standards should be adopted in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.

.

.

END

NIST WTC Recommendations 8-11 > New Design of Structures

Previous Posts in This Series …

2011-10-25:  NIST’s Recommendations on the 9-11 WTC Building CollapsesGROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30)

2011-11-18:  NIST WTC Recommendations 4-7 > Structural Fire EnduranceGROUP 2.  Enhanced Fire Endurance of Structures – Recommendations 4, 5, 6 & 7

.

2011-11-24:  SOME PRELIMINARY COMMENTS …

  1.     The first of two NIST Publications being referenced in this Series of Posts is as follows …

NIST (National Institute of Standards and Technology).  September 2005.  Federal Building and Fire Safety Investigation of the World Trade Center Disaster: Final Report on the Collapse of the World Trade Center Towers.  NIST NCSTAR 1.  Gaithersburg, MD, USA.

The 2005 NIST Report concludes, in Chapter 9, with a list of 30 Recommendations for Action, grouped together under the following 8 Subject Headings

i)        Increased structural integrity ;

ii)       Enhanced fire endurance of structures ;

iii)      New methods for fire resisting design of structures ;

iv)      Enhanced active fire protection ;

v)       Improved building evacuation ;

vi)      Improved emergency response ;

vii)     Improved procedures and practices ;   and

viii)    Education and training.

NIST has clearly stated that “the numerical ordering (of the Recommendations) does not reflect any priority”.

From my point of view, the 2005 NIST Report is especially noteworthy for the emphasis placed on:

(a)     The 3 R’s … Reality – Reliability – Redundancy ;

(b)     Evacuation Way Finding … should be ‘intuitive and obvious’ … a major challenge for building designers, since buildings are still typically designed for ‘access’ only.  In order to find the evacuation routes in a building, it is usually necessary to have a compass, a map, a magnifying glass, a torch … and a prayer book !!!   More about this in later posts …

  2.     However, following on from NIST’s emphasis on Reality … and just between you, me and the World Wide Web … there is a lot of misunderstanding in the International Fire Science and Engineering Community about what exactly is the Realistic End Condition.  But, here it goes …

Realistic End Condition:  A ‘real’ fire in a ‘real’ building, which is used by ‘real’ people with varying abilities in relation to self-protection, independent evacuation to a ‘place of safety’, and participation in the Fire Defence Plan for the building.

It is strange, therefore … and quite unacceptable … to have to point out that the Realistic End Condition IS NOT … a test fire or an experimental fire in a laboratory … or a design fire in a computer model, even IF it is properly validated !

  3.     With regard to Recommendation 8 below … NIST’s contention that “Current methods for determining the fire resistance of structural assemblies do not explicitly specify a performance objective” is not strictly the case.

If we examine Technical Guidance Document B (Ireland) and Approved Document B (England & Wales) once again, as examples close to home … Part B: ‘Fire Safety’ in both jurisdictions should be read in conjunction with its associated Part A: ‘Structure’, which contains a requirement on Disproportionate Damage.

In everyday practice, however, this never happens.  Instead, people dealing with Part B in both jurisdictions enter a sort of bubble … a twilight zone … and, if there is anything to do with structural performance in fire, they immediately refer to the Appendices at the back of both Guidance Documents (ignoring Part A altogether) … where we find a ‘single element’ approach to design, no consideration of connections, etc., etc., etc.

And … this fundamental error is further reinforced in Ireland because, under the national system of Fire Safety Certification for buildings, it is only Part B which is relevant.

At European Level, I would make the same point … under EU Regulation 305/2011 on Construction Products … Basic Requirement for Construction Works 2: ‘Safety in Case of Fire’ must be read in conjunction with Basic Requirement 1: ‘Mechanical Resistance & Stability’ … where we will again find a direct reference to Disproportionate Damage … and an indirect, but explicit, reference to Serviceability Limit States under normal conditions of use … including fire !

A major gap … the missing link at international level … is the failure, still, to elaborate and flesh out the structural concept of Fire-Induced Progressive Collapse.  More about this in later posts …

  4.     With regard to Recommendation 10 below … and amplifying my earlier comments concerning Recommendation 6 … the manufacturers of all Lightweight Structural Fire Protection Systems … not just the Sprayed Systems … have a lot to answer for.

Major question marks concerning Life Cycle Durability, and Resistance to Mechanical Damage at any stage in a building’s life cycle, hang over all of these systems.

Fire testing, alone, does not show that a Lightweight Structural Fire Protection System is ‘fit for its intended use’ !   And manufacturers well know this !!!

And as for the Installation of Lightweight Structural Fire Protection Systems on site … it’s a hornets’ nest that nobody wants to touch !

Vested interests … vested interests … vested interests !!!

.

2005 NIST WTC RECOMMENDATIONS

GROUP 3.  New Methods for Fire Resisting Design of Structures

The procedures and practices used in the fire resisting design of structures should be enhanced by requiring an objective that uncontrolled fires result in burnout without partial or global (total) collapse.  Performance-based methods are an alternative to prescriptive design methods.  This effort should include the development and evaluation of new fire resisting coating materials and technologies, and evaluation of the fire performance of conventional and high-performance structural materials.

NIST WTC Recommendation 8.

NIST recommends that the fire resistance of structures be enhanced by requiring a performance objective that uncontrolled building fires result in burnout without partial or global (total) collapse.  Such a provision should recognize that sprinklers could be compromised, non-operational, or non-existent.  Current methods for determining the fire resistance of structural assemblies do not explicitly specify a performance objective.  The rating resulting from current test methods indicates that the assembly (component or sub-system) continued to support its superimposed load (simulating a maximum load condition) during the test exposure without collapse.  Model Building Codes:  This Recommendation should be included in the national model building codes as an objective, and adopted as an integral pert of the fire resistance design for structures.  The issue of non-operational sprinklers could be addressed using the existing concept of Design Scenario 8 of NFPA 5000, where such compromise is assumed and the result is required to be acceptable to the Authority Having Jurisdiction (AHJ).  Affected Standards:  ASCE-7, AISC Specifications, ACI 318, and ASCE/SFPE 29.

NIST WTC Recommendation 9.

NIST recommends the development of:  (1) performance-based standards and code provisions, as an alternative to current prescriptive design methods, to enable the design and retrofit of structures to resist real building fire conditions, including their ability to achieve the performance objective of burnout without structural or local fire collapse;  and (2) the tools, guidelines, and test methods necessary to evaluate the fire performance of the structure as a whole system.  Standards development organizations, including the American Institute of Steel Construction, have already begun developing performance-based provisions to consider the effects of fire in structural design.

This performance-based capability should include the development of, but not be limited to:

a.     Standard methodology, supported by performance criteria, analytical design tools, and practical design guidance;  related building standards and codes for fire resistance design and retrofit of structures, working through the consensus process for nationwide adoption;  comprehensive design rules and guidelines;  methodology for evaluating thermo-structural performance of structures;  and computational models and analysis procedures for use in routine design practice.

b.     Standard methodology for specifying multi-compartment, multi-floor fire scenarios for use in the design and analysis of structures to resist fires, accounting for building-specific conditions such as geometry, compartmentation, fuel load (e.g. building contents and any flammable fuels such as oil and gas), fire spread, and ventilation;  and methodology for rating the fire resistance of structural systems and barriers under realistic design-basis fire scenarios.

c.     Publicly available computational software to predict the effects of fires in buildings – developed, validated, and maintained through a national effort – for use in the design of fire protection systems and the analysis of building response to fires.  Improvements should include the fire behaviour and contribution of real combustibles;  the performance of openings, including door openings and window breakage, that controls the amount of oxygen available to support the growth and spread of fires and whether the fire is fuel-controlled or ventilation-controlled;  the floor-to-floor flame spread;  the temperature rise in both insulated and un-insulated structural members and fire barriers;  and the structural response of components, sub-systems, and the total building system due to the fire.

d.     Temperature-dependent thermal and mechanical property data for conventional and innovative construction materials.

e.     New test methods, together with associated conformance assessment criteria, to support the performance-based methods for fire resistance design and retrofit of structures.  The performance objective of burnout without collapse will require the development of standard fire exposures that differ from those currently used.

Affected National and International Standards:  ASCE-7, AISC Specifications, ACI 318, and ASCE/SFPE 29 for fire resistance design and retrofit of structures;  NFPA, SFPE, ASCE, and ISO TC92 SC4 for building-specific multi-compartment, multi-floor design basis fire scenarios;  and ASTM, NFPA, UL, and ISO for new test methods.  Model Building Codes:  The performance standards should be adopted as an alternative method in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.

NIST WTC Recommendation 10.

NIST recommends the development and evaluation of new fire resisting coating materials, systems, and technologies with significantly enhanced performance and durability to provide protection following major events.  This could include, for example, technologies with improved adhesion, double-layered materials, intumescent coatings, and more energy absorbing SFRM’s.*  Consideration should be given to pre-treatment of structural steel members with some type of mill-applied fire protection to minimize the uncertainties associated with field application and in-use damage.  If such an approach were feasible, only connections and any fire protection damaged during construction and fit-out would need to be field-treated.  Affected Standards:  Technical barriers, if any, to the introduction of new structural fire resisting materials, systems and technologies should be identified and eliminated in the AIA MasterSpec, AWCI Standard 12 and ASTM standards for field inspection, conformance criteria, and test methods.  Model Building Codes:  Technical barriers, if any, to the introduction of new structural fire resisting materials, systems, and technologies should be eliminated from the model building codes.

[ * F-34  Other possibilities include encapsulation of SFRM by highly elastic energy absorbing membranes or commodity grade carbon fibre or other wraps.  The membrane would remain intact under shock, vibration, and impact but may be compromised in a fire, yet allowing the SFRM to perform its thermal insulation function.  The carbon wrap would remain intact under shock, vibration, and impact, and possibly under fire conditions as well.]

NIST WTC Recommendation 11.

NIST recommends that the performance and suitability of advanced structural steels, reinforced and pre-stressed concrete, and other high-performance material systems be evaluated for use under conditions expected in building fires.  This evaluation should consider both presently available and new types of steels, concrete, and high-performance materials to establish the properties (e.g. yield and ultimate strength, modulus, creep behaviour, and failure) that are important for fire resistance, establish needed test protocols and acceptance criteria for such materials and systems, compare the performance of newer systems to conventional systems, and the cost-effectiveness of alternative approaches.  Technical and standards barriers to the introduction and use of such advanced steels, concrete, and other high-performance material systems should be identified and eliminated, or at least minimized, if they are found to exist.  Affected Standards:  AISC Specifications and ACI 318.  Technical barriers, if any, to the introduction of these advanced systems should be eliminated in ASTM E 119, NFPA 251, UL 263, ISO 834.  Model Building Codes:  Technical barriers, if any, to the introduction of these advanced systems should be eliminated from the model building codes.

.

.

END