Ar C.J. Walsh Technical Blog – Registered Architect, Fire Engineer & Independent Technical/Building Controller …… International Expert on Accessibility for All (including Fire Safety) + 'Real' Sustainability Implementation !
2024-10-06: After reading the Grenfell Tower Inquiry Phase 1 Recommendations (Chapter 33) … I was naturally curious about what would be happening during the next phase. Paragraph 34.14 in Chapter 34, however, struck me as strange, even unbelievable … the single narrow #Stairs in the Tower would NOT be the subject of further investigation in Phase 2..
This is the Ridiculous Single Narrow Fire Evacuation Staircase in the High-Rise Residential Grenfell Tower …
Although the Grenfell Tower Inquiry Phase 2 Recommendations (Chapter 113) concluded by looking back to Phase 1, and specifically mentioning Personal Emergency Evacuation Plans (#PEEP) … nothing was said about the Fire Evacuation Staircase. Case closed. And there is only one word to describe this outcome: ‘FUBAR’ !
Struggling to understand that highly questionable decision … a deep dive into the Phase 1 ‘Expert’ Technical Evidence led me to this Page from Report BLAS0000019, dated 2018-10-24 …
.
Three Important Documents Relevant To Competent Fire Evacuation Staircase Design :
Orientation Manual for First Responders on the Evacuation of People with Disabilities, Document FA-235 / August 2002, published by the Federal Emergency Management Agency (#FEMA) in the #USA. Yes indeed, this document was published way back in 2002, and is still freely available on the Internet.
A vital piece of information with regard to the Firefighter’s Lift, and the serious harm which can be inflicted on People with Disabilities by its use …
In the absence of an operable Lift/Elevator Fire Evacuation Assembly in a building … which is still usually the norm … this photograph provides vital information with regard to the Correct, Best and Least Hazardous Method of assisting the evacuation of a person using a Manual Wheelchair. Electric wheelchairs are too heavy, and too awkward in shape, to be lifted down/up a Fire Evacuation Staircase, even with three sturdy individuals assisting. Note that some elaborate, highly-adapted and very expensive manual wheelchairs cannot facilitate being lifted. In all cases, however, Vulnerable People requiring Mobility Aids will be most reluctant to leave them behind in an emergency … and they MUST be allowed to keep their personal aid.
.
Final Report on the Collapse of the World Trade Centre Towers 1 & 2 (on 2001-09-11), Document NIST NCSTAR 1 / September 2005, published by the National Institute of Standards & Technology (#NIST) in the USA. Refer to Recommendation 17 on pages 215 and 216.
[ Contraflow Circulation, in a Fire Building: Emergency access by firefighters or rescue teams into a building and towards a real fire, while building users are still moving away from the fire and evacuating the building. ]
Contraflow Circulation during a Fire Emergency is essential. This facilitates rapid and safe movement of firefighters towards Fire Protected Lift/Elevator Lobbies and Areas of Rescue Assistance in order to check on the presence, or otherwise, of Vulnerable People who may be waiting for rescue.
Once Firefighters enter a Fire Building … and without provision for #Contraflow Circulation … the ordering of a ‘Stay Put’ Policy for building occupants is the only difficult option … but this is NO LONGER ACCEPTABLE.
Carefully examine the photograph below. Firefighters wearing heavy protective clothing and also carrying firefighting equipment require far, far more circulation width than 510 mm !! However, this staircase is still not wide enough to facilitate unhampered building user evacuation. Notice how people have to twist sideways in order to allow firefighters to pass … and this inevitability slows down evacuation progress in the ‘real’ world.
.
International Standard ISO 21542: Building Construction – Accessibility & Usability of the Built Environment, published in 2011 and revised in 2021. Standardizes good design for accessibility and the safe usability of buildings, which has been common practice for many decades.
Basics Of Staircase Design … Going, Rise, and Height of Handrails … ON BOTH SIDES of every flight of stairs …
Basics Of Staircase Design … Clear Unobstructed Width – Between 2 Continuous Handrails. ALL Fire Services MUST adopt this single understanding of ‘clear unobstructed width’ of a staircase !
Basics Of Staircase Design … Staircases pose a serious hazard, especially during the stressful process of Emergency Evacuation … HAZARD Tactile Walking Surface Indicators (stippled, for hazard) at the TOP and BOTTOM of every flight of stairs. Concerning this particular design issue, British Standards and English Building Regulations MUST be ignored !
Basics Of Staircase Design … Handrail Tactile Plates, essential for the evacuation information to be used by people with a visual impairment in an emergency. Refer to Figure 38 in ISO 21542. However, this is a much more informative photograph … from one of my previous visits to Japan. Notice the high colour contrasting …
Basics Of Fire Evacuation Staircase Design … The Clear Unobstructed Width of 1.50 metres between Continuous Handrails on a Fire Evacuation Staircase facilitates Contraflow Circulation, the Safe Assisted Evacuation of People in Manual Wheelchairs, and Stretcher Evacuation of Building User and/or Firefighter Victims during an emergency.
.
CONCLUSIONS
Having been directly involved in the drafting of national and international Accessibility Standards and Technical Guidance since the 1980’s … I am really, really annoyed by the inept and incompetent misuse of raw anthropometric data to try to justify the width of this sorry excuse for a Fire Evacuation Staircase in the Grenfell Tower … and inflicting the Firefighter’s Lift/Carry on People with Disabilities is NOT ACCEPTABLE. This shoddy ‘expert’ evidence clearly demonstrates a profound ignorance of Building Design, and about how ‘real’ people use ‘real’ buildings.
My great fear is that the technical justification for this shambolic fire evacuation staircase will become a benchmark for similar shambolic staircases in other buildings … not just in England, but in other jurisdictions who are dim-witted enough to copy England’s bad example … whatever it does.
Professional building design, construction and technical control disciplines, who practice in England, MUST carefully read … and keep re-reading, as necessary … Paragraph 113.12 in the Grenfell Tower Inquiry Phase 2 Report … which is expressed in too mild a form for my liking …
Our investigations have shown that levels of competence in the construction industry are generally low and that by the time of the Grenfell Tower fire many contractors, designers and building control officers treated the Statutory Guidance as containing a definitive statement of the legal requirements. It is understandable that those who turn to the Guidance for advice about how to comply with the Building Regulations should be tempted to treat it as if it were definitive … We therefore recommend that a revised version of the guidance contain a clear warning in each section that the legal requirements are contained in the Building Regulations and that compliance with the Guidance will not necessarily result in compliance with them.
I must go further … where the Technical Guidance in any of the English Approved Documents is known to be inadequate, or even suspect, it is the ethical duty and responsibility of a true professional to find a better way of complying with the relevant Functional Requirements in Building/Fire Regulations.
In addition, and specifically in relation to Building Fire Safety … it is necessary, at the same time, to comply with ALL of the relevant Functional Requirements in England’s Building Regulations … that means NOT ONLY WITH REQUIREMENT B … BUT ALSO WITH REQUIREMENTS A, K & M (for a start) ! The recent publication of a single document which merges ALL of the Approved Documents is a small step in the right direction of improving a deeply flawed body of building legislation.
.
Competent Building Design / Ethical Building Design … Lies Beyond Codes !!
2020-03-23: The Grenfell Fire Inquiry’s Phase 1 Recommendations (Part V in Volume 4 of the Phase 1 Report), were published on 30 October 2019. The initial issues covered in those Recommendations are fragmentary, lack depth and coherence … and in the case of Fire Alarms, with just one indirect reference to them in Paragraph #33.22 … they are in serious error …
.
[ Paragraph #33.22 ] There were no plans in place for evacuating Grenfell Tower should the need arise. I therefore recommend:
d. that all high-rise residential buildings (both those already in existence and those built in the future) be equipped with facilities for use by the fire and rescue services enabling them to send an evacuation signal to the whole or a selected part of the building by means of sounders or similar devices ;
.
FUNDAMENTALS OF A SOLUTION
1. A Fire Alarm (more precisely from here on, a Fire Detection & Warning System) is a critical safety feature in all buildings … ALL BUILDINGS … from the smallest and most simple, to the biggest and most complex … no exceptions !!
In order to survive in a fire emergency, Vulnerable Building Users need more time to react, and evacuate, than other occupants/users. The valuable time provided by early, accurate and precise detection is the only way to effectively facilitate this. The ‘Required Time’ to prepare for evacuation depends on many factors, e.g. building complexity, familiarity of users with evacuation routes, range and severity of user activity limitations, etc.
It follows, therefore, that if building occupants/users have to wait 15, or 20, or 30 minutes before firefighters arrive at the fire scene (Full Response Time*) and ‘an evacuation signal to the whole or a selected part of the building’ is only then sent by those firefighters … all of that valuable evacuation time for vulnerable building users has been lost. This is ridiculous, and makes no sense whatsoever. This Recommendation must be rejected out of hand, and ignored !
[ *Full Response Time: The time interval from the receipt of an emergency communication at the primary public safety answering point (#PSAP) to when emergency response units are initiating action or intervening to control a fire incident. ]
.
Important Note: In Chapter #34: ‘Looking Ahead to Phase 2’ of Moore-Bick’s Phase 1 Report, Volume 4 … Paragraph #34.14 states …
A question was raised about the width of the stairs, given that they provided the sole means of access to the upper floors of the tower for firefighters as well as the sole means of escape for the occupants. However, the stairs appear to have complied with requirements of the legislation in force at the time of their construction and the expert evidence supports the conclusion that they had sufficient capacity to enable all the occupants of the building to escape within a reasonable time. This aspect of the building will not, therefore, be the subject of further investigation in Phase 2.’
Astounding ! Absurd !! FUBAR !!!
.
All Fire Emergency Warning Systems must be designed to accommodate People with Hearing Impairments. Audible and visual warning devices must be provided together, as a single combined unit. This is particularly important in noisy and isolated building spaces, e.g. bathrooms, small meeting rooms. Vibrating devices, such as pagers or mobile phones, can be integrated into a building’s fire emergency warning system in order to provide any individual with a tactile emergency alert.
Important Note: Audible sounders, on their own, are never a sufficient Fire Emergency Warning !
.
2. The Purpose of a Fire Emergency Warning System is to provoke calm, efficient and adaptable evacuation movement by ALL building users/occupants at the earliest possible stage in a fire incident, without causing user confusion, disorientation or panic. In all building types, therefore, a reliable, informative and accessible fire emergency warning system must be installed, and such a system must always have a fire protected electrical supply.
.
3. To provoke a Calm Response from Building Users … the output from Fire Emergency Warning Devices, e.g. light, sound and messages, must be adapted to the local context of people and building surroundings.
Fire Emergency Audible Warnings … A sufficient number of low-output audible sounders, i.e. between 60-80 dB, must be specified for effectiveness. Small numbers of sounders with high output (in order to reduce costs) should never be specified, as this can lead to confusion, disorientation and panic attacks among some building users/occupants. The output of sounders must be adapted to suit interior surroundings, e.g. in small spaces with hard surfaces a lower sound output will be adequate.
Important Note: When they are asleep, hearing-able children (around ten years of age and under) … and hearing-able older people (around 65 years of age and over) are more difficult to wake and rouse sufficiently for evacuation when alerted by an audible signal alone.
Fire Emergency Visual Warnings … Light strobes/beacons must be clearly visible. To reinforce #1 above … light strobes/beacons must be placed in wash rooms and in other locations within buildings where people may be alone ; they must also be placed in noisy environments.
A sufficient number of low-output strobes/beacons must be specified for effectiveness. Small numbers of strobes/beacons with high output (in order to reduce costs) should never be specified, as these produce a glare which may cause confusion, disorientation and panic attacks among some building users/occupants. The light output of strobes/beacons must be adapted to suit interior surroundings, e.g. in dark rooms.
For light strobes/beacons, a slow rate of flash is important, i.e. no faster than once every two or three seconds, in order to encourage a calm response from building users/occupants and to avoid photosensitivity seizures. Most importantly, the flash of one strobe/beacon must be synchronized with the flashes of all other light strobes/beacons in view.
.
Fire Emergency Voice Message Warnings … Are essential to improve Warning Credibility. In other words, building users are far less likely to sit around wondering, waiting to see whether this is a ‘real’ fire emergency, a false alarm, a practice evacuation, or an electrical error. Verbal or voice messages must be short and contain appropriate warning information which is easily assimilated. The speaker should be distinct and easy to understand. Live messaging during a fire emergency is preferred over pre-recorded, standard messages. In today’s multi-cultural social environment, messages must be transmitted in at least two to three different languages, as appropriate.
Fire Emergency Directional Warnings … Combination sounder, visible strobe/beacon, and voice messaging Fire Emergency Warning Devices are now a mainstream technology, are readily available, and are being specified in new and existing buildings.
.
Audible directional signalling must be installed when dealing with difficult building configurations, e.g. in large open office layouts/spaces with minimal signage … where building users/occupants are unfamiliar with their surroundings in modern shopping centres/malls and other complex building types … or visibility of high-level signage may be reduced because of smoke logging.
Directional sounders, which guide building users during a Fire Evacuation towards Exits, Areas of Rescue Assistance and Lift/Elevator Lobbies, must be positioned at carefully chosen, suitable locations. Once reached, a directional sounder must also have a voice messaging capability in order to inform people about the next phase of evacuation.
4. Fire Emergency Warning Systems must be Accessible (for People with Activity Limitations), i.e. capable of transmitting a warning in many formats in order to ensure that all users/occupants perceive and act upon the warning in a calm manner and, thereafter, that effective evacuation movement commences without delay. Warning Credibility improves in direct relation to the type and number of different warning formats.
.
As well as indirectly referring to Fire Detection and Warning Systems, Paragraph #33.22 in Moore-Bick’s Phase 1 Recommendations has some other things to say about Evacuation. So this is an opportune moment to discuss some practical and human issues concerning Fire Emergency Evacuation … and, straight away, to deal with an unexpected consequence arising from the current CoronaVirus/CoVID-19 Emergency …
CoronaVIRUS / CoVID-19 PANDEMIC
There have been widely reported instances, in many countries, of panic buying in shops because of the 2020 CoronaVirus/CoVID-19 Emergency … but the photograph below illustrates an example of a panic reaction by building management. This appears to be a crime scene … the yellow and black tape is so dramatic. In a real Fire Emergency, many building users/occupants will be reluctant to use this final fire exit ; they will not have the time to read the small print on a notice ; they will attempt to re-trace their path of evacuation and find another exit.
This panic reaction by building management IS a serious impediment to Fire Evacuation !
Whatever the Motives of Building Management …
in countries which have Fire Codes / Regulations, this action is illegal ; and
in these days, when a wide range of ‘smart’ technologies is readily available … this action is inexcusable.
.
SOME PRACTICAL FIRE EVACUATION ISSUES
A Skill is the ability of a person, resulting from competent training and regular practice, to carry out complex, well-organized patterns of behaviour efficiently and adaptively, in order to achieve some end or goal. All building occupants/users must be skilled for evacuation to an external ‘place of safety’, which is at a safe and remote distance from the fire building. Practice fire evacuations must be carried out sufficiently often to equip building users, particularly vulnerable users, with this skill, i.e. at least once every six months ; in complex building types, practices should be carried out more often. Prior notification to occupants/users, and regular scheduling of practice evacuations should be avoided.
Familiarity with Fire Evacuation Routes will be fostered and greatly improved by means of normal, everyday use by occupants/users. This is an important task for pro-active Building Management in existing buildings … and an important aspect of new building design for Architects and Fire Engineers.
While the transmission of fire emergency warnings in many formats will increase Warning Credibility, close observation of past tragic ‘real’ fire events, e.g. the WTC 9-11 Attacks in New York City, shows that initiation of evacuation and the actual process of evacuation itself can be problematic. An interesting, easily assimilated and user-targeted skills programme of training should incorporate practical solutions to deal with the following typical problems:
Fire Emergency Preparedness: Irregular attendance of building occupants/users at fire prevention and safety training sessions, and participation in practice fire evacuations. Users not being familiar with a building’s fire emergency management plan and not knowing who is in charge … not using a building’s fire evacuation route(s), particularly staircases, during practices … or having no information about where to assemble after evacuating … or, once at a place of safety, not having any head count or identification process ;
Delaying Activities Inside The Fire Building: Once building occupants/users decide to evacuate, but before moving to evacuate, they gather personal effects … seek out friends/co-workers … search for others … make phone calls/send tweets … finish tasks/turn off computers … wait around for instructions … change shoes … and try to obtain permission to leave ;
Delaying Activities Outside The Fire Building: Once outside the building’s final fire exit, but before moving directly to a place of safety, building occupants/users stop to see what is happening … look for friends/co-workers … look for a phone … do not know where to go … or, within the ‘danger zone’ of the fire building, stop to receive medical attention.
It may seem obvious that Fire Evacuation Routes must also be Accessible (for People with Activity Limitations), which also makes routes much safer for every other building user … and sufficiently wide to accommodate Contraflow (emergency access by firefighters or rescue teams into a building and towards a real fire, while building users are still moving away from the fire and evacuating the building) … a harsh lesson learned from the 2001 WTC 9-11 Attacks and the 2017 Grenfell Tower Fire. Since they are new, strange and unusual for many building designers, and most fire engineers … these aspects of building performance are overlooked in nearly every building.
Practice Evacuations should include exercise of the buddy system ; fire safety fittings, e.g. portable fire extinguishers ; and fire evacuation devices intended for use by people with activity limitations which will require more intensive training.
.
Important Note: During fire emergencies, People with Activity Limitations must be permitted to keep possession of their own personal Facilitation / Mobility Aids.
.
SOME HUMAN FIRE EVACUATION ISSUES
The actual people who use and occupy buildings are individuals. They are different from each other, and they each have a different range of abilities (in relation to self-protection, independent evacuation to an external place of safety remote from a fire building, and active participation in a building’s fire emergency management plan), behaviour and manner of perceiving their surroundings. Two apparently similar people will also show variations in how they react to and behave in any specific situation, particularly a fire emergency.
Ability / Disability is a Continuum – a gentle gradient on which every person functions and acts at different levels due to personal and environmental, i.e. external, factors.
In situations of severe stress, e.g. during a fire emergency in a building, where there is a lack of preparedness for such an event, a lack of familiarity with evacuation routes, lack of reliable evacuation information, lack of competent leadership and clear direction, and the presence of smoke, user/occupant confusion, disorientation and panic will occur. Standard evacuation movement times will also be non-existent. In addition, people with activity limitations must then deal with many physical barriers which routinely impede their evacuation from buildings, e.g. fire resisting doorsets which are difficult to open, steps along evacuation routes and at final fire exits.
In the case of people with a mental or cognitive impairment, there is a particular need to encourage, foster and regularly practice the adaptive thinking which will be necessary during evacuation a real fire incident.
People with respiratory health conditions will not be able to enter or pass through smoke. People with visual impairments will require continuous, linked tactile and/or voice information during the whole process of fire evacuation. People with psychological impairments, i.e. vertigo and agoraphobia, will be unable to use fire evacuation staircases with glass walls in high-rise buildings. Because of the stigma still associated with disability in many countries, some users/occupants who will need assistance during a fire emergency will be reluctant to self-identify beforehand. Other people may not even be able to recognize that they have an activity limitation or a health condition.
Meaningful Consultation with a person known to occupy or use a building, for the purposes of receiving his/her active co-operation and informed consent (involving a personal representative, if necessary), is an essential component of adequate pre-planning and preparation for a fire emergency.
Building Designers, Fire Engineers and Firefighters should be aware of the following human conditions:
Agoraphobia: A fear of open spaces.
Commentary: Agoraphobia is one of the most commonly cited phobic disorders of people seeking psychiatric or psychological treatment. It has a variety of manifestations, e.g. a deep fear of leaving a building, or of being caught alone in some public place. When placed in threatening situations, agoraphobics may experience a panic attack.
Anosognosia: A neurological disorder marked by the inability of a person to recognize that he/she has an activity limitation or a health condition.
Dementia: Any degenerative loss of intellectual capacity, to the extent that normal and occupational activities can no longer be carried out.
Panic: A sudden overwhelming feeling of anxiety, which may be of momentary or prolonged duration.
Panic Attack: A momentary period of intense fear or discomfort, accompanied by various symptoms which may include shortness of breath, dizziness, palpitations, trembling, sweating, nausea, and often a fear by a person that he/she is going mad.
I was very pleased to make a Presentation at both events, adapted to suit an Irish context, on … ‘Sustainable Fire Engineering – Necessary Professional Transformation For The 21st Century’ … which continues to evolve.
Sustainable Fire Engineering: The creative, person-centred and ethical Fire Engineering response, in resilient built form and smart systems, to the concept of Sustainable Human and Social Development … the many aspects of which must receive synchronous and balanced consideration !
Presentation Abstract
Annual Fire Losses, both direct and indirect, amount to a very significant percentage of Gross Domestic Product (#GDP) in all economies, whether they are rich or poor … and result in enormous environmental devastation and social disruption. Some losses have not yet been fully identified, e.g. environmental impact … while others are not yet capable of being fully quantified, e.g. business interruption, brand and reputation damage. Globally, fire statistics still remain unreliable. In all cases, however, the waste of valuable human and natural resources caused by preventable fires is unsustainable and no longer acceptable.
From an entirely different perspective … Sustainable Buildings are presenting every society with an innovative and exciting re-interpretation of how a building functions in response to critical energy, environmental, climate change and planetary capacity pressures … an approach which has left the International Fire Engineering and Firefighting Communities far behind in its wake, struggling to develop the necessary ‘creative’ and ‘sustainable’ fire safety strategies.
The Aim of Sustainable Fire Engineering (#SFE) is to dramatically reduce direct and indirect fire losses in the Human Environment (including the social, built, economic, virtual, and institutional environments) … to protect the Natural Environment … and, within buildings, to ensure that there is an effective level of Fire Safety for All Occupants, not just for Some, over the full building life cycle.
The following Priority Themes for SFE lie outside, or beyond, the constrained and limited fire safety objectives of current fire regulations, codes and standards – objectives which do not properly protect society, a fire engineer’s clients, or the facility manager’s organization:
Fire Safety for ALL, not just for Some. Nobody left behind !
Firefighter Safety. Everyone goes home ! It is easy to dramatically improve firefighter safety with building design. So, why haven’t NIST’s 2005 and 2008 WTC 9-11 Critical Recommendations been properly implemented anywhere ?
Property Protection. Fire damage and post-fire reconstruction/refurbishment are a huge waste of resources. On the other hand, protection of an organization’s image/brand/reputation is important … and business continuity is essential. Heritage fire losses can never be replaced.
Environmental Impact. Prevention of a fire is far better than any cure ! But prevention must also begin by specifying ‘clean’ technologies and products. Low Pressure Water Mist Systems are not only person/environment-friendly and resource efficient … they are absolutely essential in airtight and hyper energy-efficient building types (e.g. LEED, PassivHaus, BREEAM) in order to achieve an effective level of fire safety for all occupants, and firefighters. [ Note: Environmental Impact Assessment (#EIA) has been superseded by Sustainability Impact Assessment (#SIA).]
Building Innovation, People and Their Interaction. Fire engineers and firefighters must begin to understand today’s new design strategies.
Sustainable Design and Engineering. Wake up and smell the coffee ! Legislation can only achieve so much. Spatial planners, building designers and fire engineers must subscribe to a robust Code of Ethics * which is fit for purpose in the Human Environment of the 21st Century.
Sustainable Fire Engineering Solutions are …
Adapted to a local context, i.e. climate change/variability/extremes, social need, geography, economy, and culture, etc ;
Reliability-based – lessons from real extreme and hybrid events, e.g. 2001 WTC 9-11 Attack, 2008 Mumbai/2015 Paris/2016 Brussels Hive Attacks and the 2011 Fukushima Nuclear Incident, are applied to frontline practice ;
Person-centred – real people are placed at the centre of creative endeavours and due consideration is given to their responsible needs, and their health, safety, welfare and security in the Human Environment ;
Resilient – functioning must be reliable during normal conditions, and include the ability to withstand, adapt to and absorb unusual disturbance, disruption or damage, and thereafter to quickly return to an enhanced state of function.
Long before the Rest of the World was introduced to the term Fire-Induced Progressive Damage, in the late afternoon of 11 September 2001 (WTC 9-11), with the collapse of World Trade Center Building No.7 in New York City …
… decades earlier … Noel Manning had intuitively discovered the same Structural Fire Engineering Concept … and had developed and tested a suite of domestic-scale building systems to deal with this very dynamic aspect of fire behaviour …
.
The International Fire Engineering Community is still shy about discussing this concept, never mind understanding it … and most importantly, solving it ! Which makes me seriously wonder … is there a deep-seated flaw in International Fire Research ? Are mainstream Fire Researchers more interested in sourcing funding than in actually solving ‘real’ world fire engineering problems ???
And I also wonder … why have the 2005 and 2008 NIST (USA) WTC 9-11 Recommendations on the WTC Building Collapses still not been properly implemented within the USA … and why have they been ignored everywhere else ?????
2016-05-16: Media coverage of the Brussels Hive Attack, on 22 March 2016 … and, more recently, my own experience travelling in the Rome Metro, where the lines have been constructed deep in the ground to avoid the city’s vast and rich archaeological heritage … made me seriously wonder about how vulnerable users of the built environment can possibly cope in emergencies.
Escalators (moving stairs) and Travellators (horizontal moving walkways) are very common in public buildings. They greatly facilitate convenient and comfortable circulation for everybody … especially in large, extensive and complex building types. Escalators are absolutely essential in metro environments, both for access and egress.
Escalators which are static … which don’t move, for one reason or another … are dangerous. The rise of steps in the main part of the escalator is usually very high, too high for any type of public building … and at the top and bottom of the escalator, the step rise varies dramatically … which is a recipe for trips and falls, particularly in any sort of emergency.
AND … we know that during a fire emergency in a building, many people will attempt to evacuate that building by re-tracing their route of entry … whatever the hazard and wherever it is located.
Too many Standards and Guideline Documents take the easy option … and recommend that lifts/elevators, escalators and travellators should all be shut down during emergencies, and their use prevented. For the moment, I am thinking of just two examples:
European Standard EN 115: Safety of Escalators and Moving Walks – Part 1: Construction and Installation. 2008-05-29, including Amendment 1 2010-02-23.
Guidelines for the Safe Operation of Escalators and Moving Walks, published by the Safety Assessment Federation (GB), in consultation with the British Health & Safety Executive. Issue 1, 2011-05-24.
These Recommendations … this Guidance, or Advice, or Whatever … show absolutely no consideration for the Safe Evacuation of People With Activity Limitations (2001 WHO ICF) in an Emergency.
These Recommendations … this Guidance, or Advice, or Whatever … are WRONG !
Subject to some simple requirements, e.g. a separate fire-protected electrical supply in each case, and appropriate management and fire service control, etc … Lifts/Elevators, Escalators and Travellators should all be available for use by people evacuating a building/facility during an emergency … and for use by firefighters accessing that same building/facility.
Building Designers, Fire Services & Standards Organizations … please take careful note !!
2016-05-05: A Mickey Mouse Effort would be a polite way of describing the long drawn-out and tortuous process of implementing NIST’s Recommendations in the United States. A better description might be … FUBAR !
15 Years After the 2001 WTC 9-11 Attacks in New York City … absolutely nothing has been done concerning the implementation of a significant number of Recommendations … other Recommendations have been only partially implemented, with many being limited to application in buildings over 128m high (420 feet in ye olde silly imperial units of measure), or else buildings over 22.86m high (75 feet) which have an occupant load exceeding 5,000 people or are essential facilities, e.g. hospitals. And believe it or not, some implementing measures are still being challenged and they may yet be reversed in the years ahead. Forget about discussing the already narrow Fire Safety Objectives in building codes/regulations, or Protecting Society, etc., etc. In essence, it has all come down to that ‘durty’ four letter word: COST !
But read this 2011 Status Report for yourselves. I have kept in touch with the current situation over there.
In 2005 & 2008, the U.S. National Institute of Standards & Technology issued a series of very important [ critical ] Recommendations on badly needed revisions to the Design – Construction – Management – Firefighting Procedures for Very High/Tall Buildings, High-Risk Buildings, Iconic Buildings, and Innovatively Designed Buildings. Many, if not all, of these Recommendations were, and remain, just as valid and just as necessary in the case of other building types … whatever their height.
A lot of effort was expended here, a few years ago, on a detailed examination of the NIST Recommendations. In one respect, the Recommendations have become dated and obsolete. The recent 2016 Brussels and 2015 Paris Hive Attacks have altered how we must categorize and deal with buildings of ‘high-risk’. From the start, however, the disability-related Recommendations only concerned mobility impaired building occupants … a serious flaw.
NIST does not have the legal authority to implement its own Recommendations within the United States. However, implementation by the Model Code (e.g. IBC & NFPA) Organizations has been brutally slow and entirely inadequate.
And … it is very noticeable how so many other countries around the world are continuing to completely ignore NIST’s Recommendations. 9-11 never happened !
2014-05-16: Anybody with even the slightest interest in the Future Development of Fire Engineering Design, and Structural Fire Engineering in particular, should pay attention to the proceedings of an upcoming CIB/NIST Workshop, which will be held on 21-22 May 2014, at the NIST Campus in Maryland, USA …
It is essential to read 3 White Papers … produced by three separate teams of experts, contracted by NIST, in advance of the Workshop … to get a ‘real’ flavour of how discussions may, or may not, develop next week. All three papers are available to download from the NIST WebSite (and the links below). I suggest that you get your hands on them … ASAP !
After reading these 3 NIST White Papers … I was not surprised by the large number of ‘unknowns’, or the enormous gaps in our ‘knowns’ …
Taken in whole and all together, however, the three documents are a public confirmation that today’s general practice of Fire Engineering is more akin to that of mid-19th Century Alchemy. Blinkered practitioners are isolated from the building design process … because they have no understanding of that process, and have no means of effective communication with the many other design disciplines involved. And minimal, i.e. ‘cost-effective'(?), compliance with the limited and inadequate fire safety objectives in current building codes/regulations is widely regarded as the one and only target for their efforts … a minor one compared to the fundamental, long-term target of realizing a Safe, Resilient and Sustainable Built Environment for All. At the same time, frontline fire service personnel are forced to operate on shoestring budgets … and, when a fire emergency inevitably occurs, they are regarded as nothing more than an expendable resource.
!! Structure … Does Not A Building Make !!
Some comments on the 3 NIST White Papers …
A. The Papers contain a number of important technical errors:
A similar Introduction in two of the Papers refers only to the 2005 NIST Report (NCSTAR 1) on the 9-11 Collapse of WTC Buildings 1 & 2 in New York City, which contained 30 Recommendations. However, NIST published a later Report in 2008 (NCSTAR 1A) on the Collapse of WTC Building 7, which contained a further 13 Recommendations … 1 new, and 12 revised/updated from the earlier 2005 Report.
There is a reference in one of the Papers to a 1989 European Directive on Construction Products (89/106/EEC), and as later amended. This Directive was repealed, in 2011, by Article 65 of the new European Union (EU) Regulation No.305/2011 on Construction Products. Unlike a Directive, a Regulation is addressed directly to the EU Member States, and does not permit any flexibility with regard to national implementation. Annex I of Regulation 305/2011 sets out 7 Basic Requirements for Construction Works:
– Mechanical resistance and stability ;
– Safety in case of fire ;
– Hygiene, health and the environment ;
– Safety and accessibility in use ;
– Protection against noise ;
– Energy economy and heat retention ;
– Sustainable use of natural resources.
Concerning fire safety in buildings … it is incorrect to state, or even suggest, that only the second Basic Requirement is relevant … a building must satisfy all of the Basic Requirements taken together, i.e. the 7 Basic Requirements are inter-dependent.
B. Having carefully read the Papers … none of the expert teams appear to have paid any attention to any of the NIST Recommendations, in either the 2005 or the 2008 Reports ! Note well that two separate series of posts on both sets of NIST Recommendations have been carried here on this Technical Blog.
C. If we have learned anything from the WTC 9-11 Building Collapses, it is that the Fire Engineer must be able to communicate effectively with other mainstream building design disciplines … especially ‘ambient’ structural engineers who speak the language of Structural Reliability, Limit State Design and Serviceability Limit States. The Fire Engineer must also become an active participant in the creative, trans-disciplinary process of design. These issues have not been seriously considered in any of the Papers.
D. All of the Papers lack a common and precise starting point … relevant structural fire engineering concepts are either not defined or badly defined … and the ‘dynamic, complex architectural interaction between a building’s structure and fabric under conditions of fire’ requires immediate and urgent investigation …
Structural Reliability
The ability of a structural system to fulfil its design purpose, for a specified time,
under the actual environmental conditions encountered in a building.
Structural Fire Engineering
Those aspects of fire engineering concerned with structural design for fire …
and the dynamic, complex architectural interaction between a building’s structure and
fabric, i.e. non-structure … under conditions of fire and its immediate aftermath,
including but not confined to the ‘cooling phase’.
Fire-Induced Progressive Damage
The sequential growth and intensification of structural deformation
and displacement, beyond fire engineering design parameters*, and the eventual failure
of elements of construction in a building – during a fire and the ‘cooling phase’
afterwards – which, if unchecked, will result in disproportionate damage,
and may lead to total building collapse.
[ *fire serviceability limit states ]
.
Disproportionate Damage
The failure of a building’s structural system:
(i) remote from the scene of an isolated overloading action ;
and (ii) to an extent which is not in reasonable proportion to that action.
[ Fire-Induced Progressive Damage and Disproportionate Damage are fundamental concepts in the Fire Engineering Design of All Buildings ! ]
.
E. It is not acknowledged in any of the Papers that the Fire Safety Objectives in Current Building Codes/Regulations are, of necessity, limited in scope … and entirely inadequate in the context of Annex I in EU Regulation 305/2011, and the long-term goal of realizing a Safe, Resilient and Sustainable Built Environment for All. Refer to the updated Scope, Aims & Objectives of CIB Working Commission 14: ‘Fire Safety’.
F. Once and for all … use of the term Fire Resistance (and any number of variations thereof, e.g. resistant, resisting, resistive, etc.) in connection with any aspect of structural performance in fire … is ridiculous ! It is roughly comparable to use of the term Fire Proof during the first half of the 20th Century.
G. Finally, for now … the current unwise focus on Crude Pass/Fail Results from the ‘standard fire’ testing of single loadbearing structural elements must evolve … must be transformed into the more detailed and precise measurement of all aspects of ‘real’ structural system performance over the full duration of a ‘design’ fire (including the cooling phase afterwards) … using a much wider range of performance monitoring equipment, e.g. short wave infra-red thermography.
.
It is no longer acceptable for Fire Engineering to exist in an isolated Twilight Zone … completely removed from the everyday realities of Mainstream Building & Construction.
2014-04-20:Traditional/Conventional Fire Engineering Practice is slowly, but inevitably, being transformed … in order to meet the regional and local challenges of rapid urbanization and climate change, the pressing need for a far more efficient and resilient building stock, and a growing social awareness that ‘sustainability’ demands much greater human creativity …
Design Target: A Safe, Resilient and Sustainable Built Environment for All
Essential Construction & Occupancy Start-Up Processes: Careful Monitoring & Reporting – Independent Verification of Performance (MRV)
.
Sustainable Fire Engineering Design Solutions:
Are Reliability-Based …
The design process is based on competence, practical experience, and an understanding of ‘real’ building performance and resilience during Extreme Man-Made Events, e.g. 2001 WTC 9-11 Attack & 2008 Mumbai Hive Attacks, and Hybrid Disasters, e.g. 2011 Fukushima Nuclear Incident … rather than theory alone.
Are Person-Centred …
‘Real’ people are placed at the centre of creative design endeavours and proper consideration is given to their responsible needs … their health, safety, welfare and security … in the Human Environment, which includes the social, built, economic and virtual environments.
Are Adapted to Local Context & Heritage* …
Geography, orientation, climate (including change, variability and severity swings), social need, culture, traditions, economy, building crafts and materials, etc., etc.
[* refer to the 2013 UNESCO Hangzhou Declaration]
In Sustainable Design … there are NO Universal Solutions !
Design Objectives:
To protect society, the best interests of the client/client organization and building user health and safety, and to maintain functionality under the dynamic, complex conditions of fire … Project-Specific Fire Engineering Design Objectives shall cover the following spectrum of issues …
Protection of the Health and Safety of All Building Users … including people with activity limitations (2001 WHO ICF), visitors to the building who will be unfamiliar with its layout, and contractors or product/service suppliers temporarily engaged in work or business transactions on site ;
Protection of Property from Loss or Damage … including the building, its contents, and adjoining or adjacent properties ;
Safety of Firefighters, Rescue Teams and Other Emergency Response Personnel ;
Ease and Reasonable Cost of ‘Effective’ Reconstruction, Refurbishment or Repair Works after a Fire ;
Sustainability of the Human Environment – including the fitness for intended use and life cycle costing of fire engineering related products, systems, etc … fixed, installed or otherwise incorporated in the building ;
Protection of the Natural Environment from Harm, i.e. adverse impacts.
.
More Specifically … with Regard to Resilient Building Performance during a Fire Incident and the ‘Cooling Phase’ after Fire Extinguishment:
1. The Building shall be designed to comply with the Recommendations in the 2005 & 2008 NIST(USA) Final Reports on the World Trade Center(WTC) 1, 2 & 7 Building Collapses.
In one major respect, the 2005 NIST Report is flawed, i.e. its treatment of ‘disability and building users with activity limitations is entirely inadequate. The Building shall, therefore, be designed to comply with International Standard ISO 21542: ‘Building Construction – Accessibility & Usability of the Built Environment’, which was published in December 2011.
2. The Building shall remain Serviceable, not just Structurally Stable(!) … until all buildings users (including those users with activity limitations waiting in ‘areas of rescue assistance’) have been evacuated/rescued to an accessible ‘place of safety’ which is remote from the building, and have been identified … and all firefighters, rescue teams and other emergency response personnel have been removed/rescued from the building and its vicinity.
The Building shall be designed to resist Fire-Induced Progressive Damage and Disproportionate Damage. These requirements shall apply to all building types, of any height.
Under no reasonably foreseeable circumstances shall the Building be permitted to collapse !
3. The Building shall be designed to comfortably accommodate and resist a Maximum Credible Fire Scenario and a Maximum Credible User Scenario.
.
Concerted International Research is Needed …
To creatively resolve the direct conflict which exists between Sustainable Building Design Strategies and Traditional/Conventional Fire Engineering.
An example … for cooling, heating and/or ventilation purposes in a sustainable building, it is necessary to take advantage of natural patterns of uninterrupted air movement in that building. On the other hand, fire consultants in private practice, and fire prevention officers in authorities having jurisdiction, will demand that building spaces be strictly compartmented in order to limit the spread of fire and smoke … thereby dramatically interfering with those natural patterns of air movement. The result is that the sustainability performance of the building is seriously compromised.
If, however, adequate independent technical control is absent on the site of a sustainable building … it is the fire safety and protection which will be seriously compromised !
To effectively deal with the fire safety problems (fatal, in the case of firefighters) which result from the installation of Innovative Building/Energy/EICT Systems and Products in Sustainable Buildings.
.
These are appropriate tasks for a new CIB W14 Research Working Group VI: ‘Sustainable Fire Engineering Design & Construction’ !
2012-12-14 & 2012-12-30: Further to this distressing incident … which exposed a profound lack of awareness, care and competence within the general fire safety industrial sector …
… this is how we would like to help you … whether you are an individual, or an organization … whether you are located in Ireland, Italy or Turkey … some other part of Europe, the Arab Gulf Region, India, Japan, China … or wherever !
And … we can, if requested or necessary, work in collaboration with local partners in those different geographical regions.
– FireOx International is the Fire Engineering Division of Sustainable Design International Ltd. (SDI) –
.
.
Introduction
Fundamentally, the 9-11 World Trade Center Incident in New York (2001) was an Extreme ‘Real’ Fire Event. It presented the International Fire Engineering Community with a catastrophic failure in conventional practices and procedures related to:
Fire Engineering, Structural Engineering, and Architectural Design ;
Human Building Management Systems ;
Emergency Response by Firefighters, Rescue Teams, and Medical Personnel ;
National and Local Organizations Having Authority or Jurisdiction (AHJ’s) ;
… and with the serious problem of entirely inadequate Fire Safety Objectives in the building legislation, model codes and design standards of the most economically advanced countries in the world.
Those people who understand the building design process, and have experience as construction practitioners, have long realised that the lessons from 9-11 must be applied across the full spectrum of building types … not just to tall buildings. Right up to the present day, unfortunately, many people in the International Fire Engineering Community are either unwilling, or unable, to do this.
Furthermore … Fire Engineering, Architectural Design and Structural Engineering must, of urgent necessity, be seamlessly conjoined … with the aim of removing misunderstandings and the wide gaps in client service delivery between the different disciplines.
In 2002, a series of Long-Term 9-11 Survivor Health Studies commenced in the USA … and in 2005 and 2008, the U.S. National Institute of Standards and Technology (NIST) issued a series of Post 9-11 Critical Recommendations concerning the design, construction, management and operation of buildings.
At FireOx International … we have fully integrated this essential design guidance into our frontline fire engineering and architectural practice … we have developed unique and practical solutions for worldwide application, some of which appear in International Standard ISO 21542: ‘Building Construction – Accessibility & Usability of the Built Environment’, published in December 2011.
.
.
FireOx International’s Commitment to You
As a necessary response to the New 21st Century Paradigm of Real Extreme Event in a Built Environment which is becoming more and more complex … is subject to climate change and severe weather events … and is vulnerable to malign and malevolent disruption –
WE are committed to … the implementation of a Sustainable Human Environment which is Fire Safe and Secure for All, meaning that an ‘appropriate project-specific fire safety level’ is our fire engineering objective, with ‘human health protection’ targeted as a priority … through the use of innovative, reliability-based and person-centred sustainable design practices and procedures.
.
What is an ‘Appropriate Fire Safety Level’ in Your Building or Facility ?
It is rarely, if ever, explained to clients/client organizations that the Minimal Fire Safety Objectives in building legislation are focused solely on protecting the ‘interests’ of society, not those of the individual … are, quite often, inadequate and/or flawed … and are, always, revised only after the latest tragedy !
To properly protect Your Interests as a client/client organization … we strongly advise that the Appropriate Level of Fire Safety in Your Building or Facility should exceed the minimal level of safety required by building legislation. We would also caution that, in many jurisdictions (e.g. India), compliance with national building legislation is voluntary.
Which raises the issues of whether or not you will actually get what you pay for, and whether or not the Fire Protection Measures in Your Building or Facility are reliable (in other words, will they perform as intended at the time of a ‘real’ fire, which may occur at any time in a building’s long life cycle) !?! Competent Technical Control of Design and Construction, independent of the design and construction organization(s), is essential.
You should carefully consider the following spectrum of issues which may be directly relevant to Your Project. Following a process of consultation with you, we then develop Project-Specific Fire Engineering Design Objectives … bearing in mind that you must also comply with safety at work, anti-discrimination, and environmental legislation, etc … maintain business continuity, etc … be energy efficient, etc … and be socially responsible, etc …
– Protection of the Health of All Building Users … including People with Activity Limitations (2001 WHO ICF), Visitors to the building or facility who may be unfamiliar with its layout, and Contractors or Product/Service Suppliers temporarily engaged in work or business transactions on site ;
– Protection of Property from Loss or Damage … including the Building or Facility, its Contents, and Adjoining or Adjacent Properties ;
– Safety of Firefighters, Rescue Teams and Other Emergency Response Personnel ;
– Ease and Reasonable Cost of ‘Effective’ Reconstruction, Refurbishment or Repair Works after a Fire ;
– Sustainability of the Human Environment (social – built – virtual – economic) … including Fitness for Intended Use and Life Cycle Costing of fire engineering related products and systems, etc … fixed, installed or otherwise incorporated in the building or facility ;
– Protection of the Natural Environment from Harm, i.e. Adverse or Damaging Impacts.
.
FireOx International – Our Fire Engineering Services
WE will advise you on Fire Safety Policy, Fire Safety Strategy Development, Fire Safety Implementation … and, whether you are within or from outside the European Union, on CE Marking of Fire Protection Related Construction Products ;
WE understand the process of Design, particularly the new language of Sustainable Design … and we will produce Creative Fire Engineering Solutions for Your Project ;
WE are thoroughly familiar with the intricacies of Building Sites … and we will verify and/or validate Design Compliance during construction, and at project completion … and, if requested or necessary, as a completely Independent Technical Controller ;
WE communicate easily and effectively with other Professional Design Disciplines, including architects and structural engineers … and we will act as fully participating members of Your Project Design & Construction Team … and, if requested or necessary, as the Design Professional in Responsible Charge** ;
Are adapted to Local Geography, Climate/Climate Change, Social Need, Culture, Economy … and Severe Events (e.g. earthquakes, flooding) ;
Are ‘Reliability-Based’, i.e. that design process based on practical experience, competence and an examination of real extreme events, e.g. 2001 WTC 9-11 & 2008 Mumbai Attacks, and 2011 Fukushima Nuclear Incident … rather than theory alone ;
Are ‘Person-Centred’, i.e. that design process which places ‘real’ people at the centre of creative endeavours and gives due consideration to their responsible needs, and their health, safety, welfare and security in the Human Environment.
It is there, not here, that we define Sustainable Human & Social Development … and describe how our Practice is responding to this open, intricate, dynamic, and still evolving concept. The resulting transformation in how frontline services are provided to our Clients/Client Organizations ensures a much more comfortable ‘fit’ to their needs … and a greater level of protection, safety and security for society !
.
[** 2005 NIST(USA) Final Report on 9-11 World Trade Center 1 & 2 Tower Collapses
– Footnote 49 –
… the Design Professional in Responsible Charge – usually the lead architect – ensures that the (Design) Team Members use consistent design data and assumptions, co-ordinates overlapping specifications, and serves as the liaison with enforcement and review officials, and with the client or client organization. ]