Ar C.J. Walsh Technical Blog – Registered Architect, Fire Engineer & Independent Technical/Building Controller …… International Expert on Accessibility (incl. Fire Safety & Evacuation) for ALL + 'Real' Sustainability Implementation ! …… NO ADS & NO AI HERE !!
2015-11-06 ! We are very pleased to announce that the Fire Safe Europe Alliance … www.firesafeeurope.eu … has become actively involved, together with Glasgow Caledonian University and FireOx International, in co-hosting SFE 2016 DUBLIN. To facilitate the Network’s full engagement and provide sufficient time for promotion, etc … it was jointly agreed that the new dates for this Event shall be from 28-30 September 2016.
We have every confidence that SFE 2016 DUBLIN will now be a much better event … having a wider range of stakeholder participation.
.
2015-06-29 …
Sustainable Fire Engineering – Effective Fire Safety for All in Sustainable Buildings ! 28-30 September 2016 Dublin, Ireland
———— www.sustainable-firengineering.ie or www.sfe-fire.eu
——— Approved Regional Sustainable Built Environment Conference in the 2016-17 Series
—— The Gresham Hotel, O’Connell Street, Dublin, Ireland
Céad Míle Fáilte (Hundred Thousand Welcomes) to Dublin, in Ireland … and to the First International Conference devoted to this complex subject !
The 21st Century has had a cruel and savage birth: extreme man-made events, hybrid disasters, severe natural events, complex humanitarian emergencies, with accelerating climate change and variability. The old certainties are crumbling before our eyes …
The resolute Answer to these threats and the rapidly changing social and environmental needs of our world is Sustainable Fire Engineering !
• SFE fulfils a critical role in the realization of a Safe, Resilient & Sustainable Built Environment for All ;
• SFE facilitates positive progress towards the United Nation’s 17 Sustainable Development Goals & 169 Performance Targets, which were adopted in September 2015 ;
• SFE fast-tracks proper compliance with the Basic Requirements for Construction Works in the European Union’s Construction Products Regulation 305/2011 (Annex I), specifically the interlinked Requirements 7, 2, 1, 3 & 4.
Please join us in an informal, multidisciplinary and pre-normative forum … as we examine Sustainable Fire Engineering more deeply.
INTRODUCTION to SFE 2016 DUBLIN
Fire Losses – both direct and indirect – amount to a very significant percentage of GDP in all economies, whether they are rich or poor … and result in enormous environmental damage and social disruption. Fire Engineering, including Fire Prevention and Protection in Buildings, is a major multi-billion Euro/Dollar component of the Construction Industrial Sector – worldwide.
Unfortunately … a fundamental conflict exists between Sustainable Building Design Strategies and the fire safety responses adopted in today’s Conventional Fire Engineering. To take a simple example: for cooling, heating or ventilation purposes in a Sustainable Building, it is necessary to take advantage of natural unobstructed patterns of air movement in that building. On the other hand, fire engineers in private practice and control personnel in Authorities Having Jurisdiction (AHJ’s) will demand that building spaces be tightly compartmented in order to limit the spread of fire and smoke … dramatically interfering with those natural patterns of air movement.
Unusual fire behaviour and a range of difficult fire safety issues (critical, in the case of firefighters) also arise from the Innovative Design Features (for example, ‘green’ roofs, elaborate intelligent façades) and Building Products / Systems (for example, photovoltaic panels) being installed in Sustainable Buildings.
A wide chasm separates the language and understanding of these two very different design disciplines. As a result, the performance of Sustainable Buildings can be seriously compromised. If, on the other hand, adequate independent technical control is absent on site … it is fire safety which is weakened.
And because, in most countries, the emphasis is placed on pre-construction design intent rather than the ‘real’ performance of the completed/occupied building … these problems are ignored and remain hidden … until a serious fire breaks out !
SUSTAINABLE FIRE ENGINEERING’s AIM
The Aim of Sustainable Fire Engineering is to dramatically reduce all direct and indirect fire losses in the Human Environment (including social, built, economic, environmental, virtual, and institutional) … and to protect the Natural Environment.
Towards Zero Preventable Fires in the Built Environment !
In essence … Sustainable Fire Engineering heavily front-loads Fire Prevention and Fire Protection Measures … above and beyond the minimal and very limited fire safety objectives mandated by current legislation.
Adapted to local geography, climate change and variability, social need, economy, and culture ;
Reliability-based ;
Person-centred ;
Resilient.
SFE 2016 DUBLIN OBJECTIVES
1. To initiate discussion and foster mutual understanding between the International Sustainable Development / Climate Change / Urban Resilience Communities and the International Fire Science & Engineering Community. 2. To bring together today’s disparate Sectors within the International Fire Science and Engineering Community … to encourage better communication between each and trans-disciplinary collaboration between all. 3. To transform Conventional Fire Engineering into an ethical and fully professional Sustainable Design Discipline which is fit for purpose in the 21st Century … meaning … that fire engineers can participate actively in a sustainable design process, and can respond creatively with sustainable fire engineering design solutions which result in Effective Fire Safety for All in Sustainable Buildings. 4. To launch a CIB W14 Research Working Group VI Reflection Document: ‘Sustainable Fire Engineering Design & Construction’ … which will establish a framework for discussion on the future development of Sustainable Fire Engineering.
Download the Information on the Links Page … Review the wide range of Topics which will be examined and discussed at SFE 2016 DUBLIN … Submit an Abstract for a Paper … and Give serious consideration to becoming an Industry Exhibitor, or an Enlightened, Far-sighted Sponsor !!
2014-04-20:Traditional/Conventional Fire Engineering Practice is slowly, but inevitably, being transformed … in order to meet the regional and local challenges of rapid urbanization and climate change, the pressing need for a far more efficient and resilient building stock, and a growing social awareness that ‘sustainability’ demands much greater human creativity …
Design Target: A Safe, Resilient and Sustainable Built Environment for All
Essential Construction & Occupancy Start-Up Processes: Careful Monitoring & Reporting – Independent Verification of Performance (MRV)
.
Sustainable Fire Engineering Design Solutions:
Are Reliability-Based …
The design process is based on competence, practical experience, and an understanding of ‘real’ building performance and resilience during Extreme Man-Made Events, e.g. 2001 WTC 9-11 Attack & 2008 Mumbai Hive Attacks, and Hybrid Disasters, e.g. 2011 Fukushima Nuclear Incident … rather than theory alone.
Are Person-Centred …
‘Real’ people are placed at the centre of creative design endeavours and proper consideration is given to their responsible needs … their health, safety, welfare and security … in the Human Environment, which includes the social, built, economic and virtual environments.
Are Adapted to Local Context & Heritage* …
Geography, orientation, climate (including change, variability and severity swings), social need, culture, traditions, economy, building crafts and materials, etc., etc.
[* refer to the 2013 UNESCO Hangzhou Declaration]
In Sustainable Design … there are NO Universal Solutions !
Design Objectives:
To protect society, the best interests of the client/client organization and building user health and safety, and to maintain functionality under the dynamic, complex conditions of fire … Project-Specific Fire Engineering Design Objectives shall cover the following spectrum of issues …
Protection of the Health and Safety of All Building Users … including people with activity limitations (2001 WHO ICF), visitors to the building who will be unfamiliar with its layout, and contractors or product/service suppliers temporarily engaged in work or business transactions on site ;
Protection of Property from Loss or Damage … including the building, its contents, and adjoining or adjacent properties ;
Safety of Firefighters, Rescue Teams and Other Emergency Response Personnel ;
Ease and Reasonable Cost of ‘Effective’ Reconstruction, Refurbishment or Repair Works after a Fire ;
Sustainability of the Human Environment – including the fitness for intended use and life cycle costing of fire engineering related products, systems, etc … fixed, installed or otherwise incorporated in the building ;
Protection of the Natural Environment from Harm, i.e. adverse impacts.
.
More Specifically … with Regard to Resilient Building Performance during a Fire Incident and the ‘Cooling Phase’ after Fire Extinguishment:
1. The Building shall be designed to comply with the Recommendations in the 2005 & 2008 NIST(USA) Final Reports on the World Trade Center(WTC) 1, 2 & 7 Building Collapses.
In one major respect, the 2005 NIST Report is flawed, i.e. its treatment of ‘disability and building users with activity limitations is entirely inadequate. The Building shall, therefore, be designed to comply with International Standard ISO 21542: ‘Building Construction – Accessibility & Usability of the Built Environment’, which was published in December 2011.
2. The Building shall remain Serviceable, not just Structurally Stable(!) … until all buildings users (including those users with activity limitations waiting in ‘areas of rescue assistance’) have been evacuated/rescued to an accessible ‘place of safety’ which is remote from the building, and have been identified … and all firefighters, rescue teams and other emergency response personnel have been removed/rescued from the building and its vicinity.
The Building shall be designed to resist Fire-Induced Progressive Damage and Disproportionate Damage. These requirements shall apply to all building types, of any height.
Under no reasonably foreseeable circumstances shall the Building be permitted to collapse !
3. The Building shall be designed to comfortably accommodate and resist a Maximum Credible Fire Scenario and a Maximum Credible User Scenario.
.
Concerted International Research is Needed …
To creatively resolve the direct conflict which exists between Sustainable Building Design Strategies and Traditional/Conventional Fire Engineering.
An example … for cooling, heating and/or ventilation purposes in a sustainable building, it is necessary to take advantage of natural patterns of uninterrupted air movement in that building. On the other hand, fire consultants in private practice, and fire prevention officers in authorities having jurisdiction, will demand that building spaces be strictly compartmented in order to limit the spread of fire and smoke … thereby dramatically interfering with those natural patterns of air movement. The result is that the sustainability performance of the building is seriously compromised.
If, however, adequate independent technical control is absent on the site of a sustainable building … it is the fire safety and protection which will be seriously compromised !
To effectively deal with the fire safety problems (fatal, in the case of firefighters) which result from the installation of Innovative Building/Energy/EICT Systems and Products in Sustainable Buildings.
.
These are appropriate tasks for a new CIB W14 Research Working Group VI: ‘Sustainable Fire Engineering Design & Construction’ !
2013-05-30: Further to the recent post here, dated 2013-04-02 … and this Page on our Corporate WebSite …
Pausing … and stepping back … to consider conventional architectural practice, how architects are educated, and whether or not the professional institutes are helping, or handicapping, the forward progress of Architecture for a Better, More Sustainable World … I am deeply concerned about the future …
1. Should it be ‘Multi-Disciplinary’ or ‘Trans-Disciplinary’ ?
The word ‘trans-disciplinary’ is confusing to a lot of people … surprisingly, to many at senior levels in construction-related industries, research sectors, and academia … not just in Ireland, but internationally. The more senior the level, it seems the higher are the walls of that proverbial ‘box’. But, let me reassure you, thinking outside the ‘box’ is not confined to people in their early 20’s !!
Looking over just the initial list of Consultant Specialists in a complex architectural project … it is the task of the Architect to transform a widely ‘multi-disciplinary’ input into a coherent ‘trans-disciplinary’ output. These two concepts are very different.
Next Generation Architectural Processes and Procedures are urgently required …
.
2. EU Climate & Energy Policies – Key Driving Forces for Sustainability !
Recently, the European Commission issued this Green Paper … (which, by the way, has absolutely nothing to say about Climate Change Adaptation !) …
European Commission COM(2013) 169 final – Brussels, 2013-03-27
Click the Link Above to read and/or download PDF File (104 Kb)
.
Concerning this Green Paper … Two Important Points …
(i) Current European Union (EU) Climate and Energy Policies are not just a passing fad … they are here to stay. With certainty, we also know that they will become more and more stringent … and that higher levels of performance will be mandated … not just on paper or a computer printout … but in reality, for example, in buildings which are constructed and actually occupied by ‘real’ building users. Refer also to recent findings, in Europe, about the large and growing discrepancy between car fuel efficiencies claimed after testing in a laboratory, and when later monitored under ‘real’ driving conditions.
(ii) It has now become obvious that the European Commission has lost the plot … big time ! Policies and Actions in closely related fields have been permitted to become fragmented, disjointed, and even counter-productive. Written into the EU treaties is the term ‘sustainable development’ … an intricate, open, dynamic and continuously evolving concept. However, senior levels (both political and bureaucratic) in the different Directorates-General of the European Commission have long ago forgotten, mislaid and/or lost the proper meaning of ‘sustainability’ … and the essential interdependency of its many aspects.
.
… which brings me to the urgent necessity for Next Generation Architectural Design Concepts …
.
In Europe … the 1990’s and early 2000’s, taken together, was a period of construction experimentation and research. We thought we could afford the resources and the lazy times … to try this, that and the other. Little emphasis was placed on practical implementation in ‘real’ buildings. However, the scale and immediacy of today’s Sustainable Development Challenges in the Built Environment have, within a few short years and much more quickly than expected, become unprecedented.
The Yanks (Gringos) are very strong on marketing … much stronger than Europe … so let’s examine a small model building … and see if its Architectural Design Concept is both coherent and comprehensive …
Mr. Amory Lovins, of the Rocky Mountain Institute in the USA ( www.rmi.org ) … has produced a very snazzy Visitor’s Guide to the sprawling complex that is ‘his home, bioshelter and office’ in Snowmass, Colorado … a Guide intended for wide public circulation.
Concerning this Building … Three Points of Interest(?) …
(i) For a fleeting moment … let us imagine that a percentage – not even all – of the vast populations living in Africa, India and China wanted the same sort of lifestyle, including the house, that Amory Lovins possesses. What would be the resource implications for this planet ??
(ii) In a first construction ‘try’ … separate solar and/or photovoltaic panels fixed in place on a roof … attached to the building, almost as an afterthought … were the norm. Now, however, these building systems are no longer innovative … they must be properly shown to be ‘fit for their intended use’ (to comply with building regulations and codes) … and they should now be fully integrated into the architectural design concept for the building … which is not the case in the photograph above. [ Car manufacturers face a similar design challenge today … how to successfully integrate new technologies, e.g. satellite navigation screens, smartphone docking stations, usb sockets, bluetooth, etc., etc., into the front dashboard.]
Anyway … how reproducible is this model building in urban and suburban contexts … in the USA … or elsewhere in the world ?? How many people would have access to sufficient land outside a building to ‘plant’ one, or a series of photovoltaic panels ? Tracking photovoltaic panels, as shown above ?? And as seen in Italy, with those ridiculous photovoltaic fields (in a post, dated 2011-11-07 ) … good agricultural lands should not be used for this purpose … not now, not ever, never !
(iii) Sustainable Buildings are ‘high-tech’ … and a very large amount and variety of electronic and mechanical equipment is necessary in order to reliably monitor and tightly control their performance … in other words, to operate a building in accordance with its design specification. Again … these services should be fully integrated into the architectural design concept for what is, no longer, just a simple dwelling. Do similar houses without basements, for example, now need a central well-ventilated service room, complete with compact workstation ?
In my opinion … the Architectural Design Concept for this building is not coherent. The overall architectural impression is one of a large sprawling house, on a very large plot of land … with many different ‘environmental/energy’-related appendages, or add-ons. Can you see any coherence ?
It is the task of the Architect to consider all facets of building performance at the earliest stages of design … whether a small building, or a very large complex building … and to integrate those many diverse, but interdependent, facets into a coherent architectural statement … having a conceptual single crystalline shape … while also bearing in mind ‘person-centredness’, ‘flexibility’, ‘adaptability’, ‘accessibility for all’, and a ‘long and useful life cycle’.
[ An aside … closer to home … we are now witnessing the rise of the ‘Passive House Designer’. This person, who is able to use a specific computer software package … no less, and no more … need not necessarily be an architect, or have any architectural education/training. Is it possible to refer to the realized output from this software as ‘architecture’ … or are they merely drab, boring boxes ?? ]
.
3. Sustainable Buildings, Fire Safety & Fire Engineering ?
In the elaborate Amory Lovins Visitor’s Guide above … there is only one mention of fire hazard in the building … and that is in relation to a Passive Clothes Dryer (Page 40). End of story with regard to the Fire Safety Issues for its Users … and the Fire Engineering Implications arising from a chosen architectural design and chosen construction materials and methods.
When I was referring to a centrally located service room in # 2(iii) above … that room should also be structurally hardened, and fire and smoke ‘separated’ from other spaces in the house. Or … if the service equipment is located in a roof space, there are implications for roof structural reliability in a fire situation, and the fire resistance of the ceiling construction beneath. Or … if the equipment is located in a basement, a simple intermediate timber floor construction overhead is inadequate.
Furthermore … an intelligent fire detection and warning system … and a suitable domestic fire suppression system … are no longer luxuries or optional extras, but essential requirements ! Who would want to lose such a valuable investment ??
And insofar as fire safety issues are not being considered … it seems, at all … in the case of most ‘high-tech’, sustainable buildings … and certainly not in the case of the Lovins House … the Architectural Design Concepts for these buildings ‘suffer’ from a gaping hole … an enormous void … they are incomplete and, therefore, entirely inadequate.
Fire Engineering involves much, much more than mere compliance with building regulations and codes … whose fire safety objectives are limited, and whose performance requirements are sometimes inadequate and always minimal.
.
Unfortunately … there is a fundamental conflict between Sustainable Building Design Strategies and the current state-of-the-art in Fire Engineering Design. As an example … for cooling, heating and/or ventilation purposes in a sustainable building, it is necessary to take advantage of natural patterns of air movement in that building. On the other hand, fire consultants in private practice, and fire prevention officers in Authorities Having Jurisdiction (AHJ’s), will demand that building spaces be strictly compartmented in order to limit the spread of fire and smoke … thereby dramatically interfering with those natural patterns of air movement.
In everyday practice, there is a vast chasm in understanding and communication between these two very different design disciplines. As a result, serious compromises are being enforced on Sustainability Performance. If, on the other hand, adequate independent technical control is absent on the site of a Sustainable Building … it is the fire safety and protection which is being seriously compromised.
A range of critical fire safety issues (fatal, in the case of firefighters) are also arising from the Innovative Building Products and Systems being installed in Sustainable Buildings.
And because the emphasis is on pre-construction design ‘intent’ rather than the ‘real’ performance of the completed and occupied building … all of these problems are being conveniently sidestepped or ignored … and they remain hidden from everybody’s view.
.
Sustainable Fire Engineering Design, on the other hand, is the creative response to Sustainable Design … and the powerful drivers of Climate Change Adaptation, and Energy Conservation/Efficiency in Buildings.
Sustainable Fire Engineering Design Solutions are …
Adapted to Local Conditions … Geography, Climate (change, variability and severity swings), Social Need, Culture, and Economy, etc., etc ;
‘Reliability-Based’ … the design process is based on competence, practical experience, and an examination of ‘real’ extreme events, e.g. 2001 WTC 9-11 & 2008 Mumbai Attacks, and 2011 Fukushima Nuclear Incident … rather than on theory alone ;
‘Person-Centred’ … ‘real’ people are placed at the centre of creative endeavours and proper consideration is given to their responsible needs … and their health, safety and welfare … and security … in the Human Environment.
Sustainability … continues to fundamentally transform our Fire Engineering, Architectural and Consultancy Practice at Sustainable Design International Ltd (SDI) !
Submissions on India’s Draft Amendment No.1 to the 2005 National Building Code (SP 7:2005) concerning the Proposed Incorporation of a New Part 11: ‘Approach to Sustainability’ had to arrive at the Bureau of Indian Standards (BIS), in Dilli … by e-mail … no later than Friday last, 15 March 2013 …
Indian NBC, Proposed Part 11 on ‘Sustainability’ – December 2012 Consultation
.
Extract From Foreword (Page 7):
‘ Developed nations’ approach to sustainability generally concentrates on energy conservation through high technology innovations, and use of products, materials and designs with lower embodied energy. Their green ratings are based on intent, which implies expert inputs and simulation. The Indian construction industry will do better using our traditional wisdom and practices, building in harmony with nature through regional common knowledge, consuming as little as necessary, applying low cost technology innovations, using recycled materials, and recognizing performance (not intent) through easily measurable parameters wherever feasible.’
How Right They Are About Prioritizing ‘Real’ Performance !!
.
And Just Before That Extract Above:
‘ The authentic (my insert !) Indian way of life is aparigraha (minimum possessions), conservation (minimum consumption), and recycling (minimum waste). These three attributes are the guiding principles for sustainable buildings as well. With these attributes and its rich heritage, India can make a substantial contribution in this field and eventually lead the world on the path of sustainability.’
An Overly Ambitious Target ? Perhaps Not.
.
SDI Supporting India’s National Sustainable Buildings Strategy …
We very much welcome this opportunity to make a Submission on India’s Draft Amendment No.1 to the 2005 National Building Code (SP 7:2005) concerning the Proposed Inclusion of a New Part 11 ‘Approach to Sustainability’.
This IS an important development for India … and it DOES mark a substantial contribution to this field, at international level. We wish that other countries would follow your example … particularly China, the other mushrooming economies in South-East Asia, and the Arab Gulf States.
You may not be aware that Sustainable Design International (SDI) has been specializing in the theory and implementation of a Sustainable Human Environment (social, built, virtual, and economic) since the mid-1990’s.
And, for example … in September 2007, we were invited to make a series of Keynote Presentations to 20 Senior National Decision-Makers, from both the public and private sectors, at a 2-Day Workshop which was organized for us in Lisboa, Portugal. If invited, we would be delighted to repeat this valuable exercise in Dilli, Bengaluru, and other suitable venues in India.
.
IF India is to lead the world on this particular track, i.e. Sustainable Buildings, a coherent philosophy must be outlined in the Proposed New Part 11 of the National Building Code, and a clear direction must also be given there to decision-makers, e.g. clients/client organizations, and designers.
Certain essential content must be included in Part 11. With regard to an improved layout of Part 11, please review the attached SDI Document: ‘SEED Building Life Cycle’ (PDF File, 55 Kb) .
.
Because you have prioritized ‘real’ building performance over pre-construction design ‘intent’, it is appropriate to begin our comments here …
1. Sustainability Performance Indicators
In order to prioritize ‘real’ performance, the monitoring of actual sustainability performance in completed and occupied buildings must be comprehensive, accurate and reliable. Indicators of sustainability performance must, therefore, be included in all sections of the Proposed New Part 11.
Sustainability Performance Indicators provide important signposts for decision-making and design in many ways. They can translate physical and social science knowledge into manageable units of information which facilitate the decision-making and design processes. They can help to measure and calibrate progress towards sustainable development goals, and sectoral sustainability targets. They can provide an early warning to prevent economic, social and environmental damage and harm. They are also important tools to communicate ideas, thoughts and values because, as statisticians say: “We measure what we value, and value what we measure”.
Performance Indicators may be both quantitative and qualitative … but must cover all stages of the building process, i.e. project feasibility and performance specification, spatial planning, design, construction, management, operation, maintenance and servicing, de-construction, disposal, final site clean-up and sustainable repair.
While many, though not all, types of building performance can be successfully monitored using lightweight portable equipment … a certain number of monitoring devices must also be permanently installed in the building during construction. A facility to reliably feed the output from these devices back to data collection points, on site and remote, must also be incorporated in the Building’s Intelligent Management System.
Management and collation of sustainability performance data must be reliable. Uncertainty is always present. Therefore, Statements of Uncertainty should always be attached to ‘reliable’ data.
Safety Factors should always be included when targeting critical ‘health and safety’ related types of performance.
Sustainability Performance Indicators must be directly comparable across different Global Regions … within Asia, across different countries … and within India, across different States. A Balanced, Harmonized Core Set of Indian Performance Indicators should be quickly developed. A Balanced ‘Local’ Set of Performance Indicators will always be necessary.
People tasked with monitoring sustainable building performance must be competent … and independent, i.e. be unconnected to client, design and construction organizations.
Specifically in relation to Energy Performance, the targets to be achieved in new buildings must be far more ambitious. Please review the attached SDI Document: ‘SEED Positive Energy Buildings’ (PDF File, 29 Kb) .
.
2. Properly Defining ‘Sustainable Development’
As currently drafted … Definition 2.26 Sustainable Development, on Page 13 of the Proposed New Part 11, is not only ambiguous, it is inadequate for India’s needs … and it is barely the first half of the full, correct definition …
Sustainable Development is development that meets the needs of the present without compromising the ability of future generations to meet their own needs. It contains within it two key concepts:
the concept of ‘needs’, in particular the essential needs of the world’s poor, to which overriding priority should be given ; and
the idea of limitations imposed by the state of technology and social organization on the environment’s ability to meet present and future needs.
[ Please refer to the 1987 Report of the World Commission on Environment & Development (WCED): ‘Our Common Future’ – Chapter 2, Paragraph 1.]
This original definition in the 1987 WCED Report IS appropriate for India … and it must become the core definition at the heart of India’s National Sustainable Buildings Strategy !
A careful reading of the full definition makes it clear that there are Many Aspects to this intricate, open, dynamic and still evolving concept … the most important of which are: Social, Economic, Environmental, Institutional, Political, and Legal.
It is a Fundamental Principle of Sustainability, and one of its Primary Values … that Implementation must be Synchronous, Balanced and Equitable across All Aspects of Sustainability.
The ‘Green Agenda’ merely considers Environmental Aspects of Sustainability … in isolation from all of the other Aspects ! This is a fatal flaw which must be avoided in the Proposed New Part 11 !!
[ I made many references to this issue during the FSAI Conferences in India ! ]
.
3. Sustainability Impact Assessment (SIA) for India !
Rather than Environmental Impact Assessment … surely the Proposed New Part 11: ‘Approach to Sustainability’ must now use, explain and discuss Sustainability Impact Assessment instead !?!
Sustainability Impact Assessment (SIA)
A continual evaluation and optimization assessment – informing initial decision-making, or design, and shaping activity/product/service realization, useful life and termination, or final disposal – of the interrelated positive and negative social, economic, environmental, institutional, political and legal impacts on the synchronous, balanced and equitable implementation of Sustainable Human & Social Development.
.
4. A Robust Legal Foundation for ‘Sustainable Human & Social Development’
Paragraph 4 (Chapter 2, 1987 WCED Report) states …
‘ The satisfaction of human needs and aspirations is the major objective of development. The essential needs of vast numbers of people in developing countries – for food, clothing, shelter, jobs – are not being met, and beyond their basic needs these people have legitimate aspirations for an improved quality of life. A world in which poverty and inequity are endemic will always be prone to ecological and other crises. Sustainable development requires meeting the basic needs of all and extending to all the opportunity to satisfy their aspirations for a better life.’
Trying to list the essential needs of people / the basic needs of all is a very difficult task … but it is work which has been on-going, at international level, since just after the Second World War.
The essential needs of people / the basic needs of all … are specified as being Human Rights and Fundamental Freedoms, and are already fully described within the extensive framework of International Legal Rights Instruments.
Which is why, many years ago, SDI developed this definition for Sustainable Human & Social Development … in order:
to give this concept a robust legal foundation ; and
(because of widespread confusion in media, political and academic circles) … to clearly establish that we are talking about sustainable human and social development, and not sustainable economic development, or any other type of development !
Sustainable Human & Social Development
Development which meets the responsible needs, i.e. the Human & Social Rights*, of this generation – without stealing the life and living resources from future generations … especially our children, and their children … and the next five generations of children.
*As defined in the 1948 Universal Declaration of Human Rights.
.
5. Climate Change Adaptation & Resilient Buildings in India ?
Atmospheric Ozone Depletion and Climate Change are mentioned, here and there, in the Proposed New Part 11. The important implications of these phenomena for Sustainable Building Design in India are not explained … at all. Why not ?
To properly respond to these phenomena, both must be integrated into India’s National Sustainability Strategies & Policies.
At the very least … we strongly recommend that Design Guidance on Climate Resilient Buildings be immediately drafted. This guidance must be appropriate for implementation in each of the different climatic regions of India.
.
6. A Sustainable Indian Built Environment which is Accessible for All !
Barrier Free is mentioned, here and there, in the Proposed New Part 11. This is to be warmly welcomed and congratulated. Under Social Aspects of Sustainable Human & Social Development … this is an essential attribute of a Sustainable Built Environment ! However, no guidance on this subject is given to decision-makers or designers. Why not ?
However, you should be aware that India ratified the United Nations Convention on the Rights of Persons with Disabilities (UN CRPD) on 1 October 2007. For your convenience, I have attached copies of the Convention in English, Hindi and Tamil.
You should also be aware that, in December 2011, the International Standards Organization (ISO) published ISO 21542: ‘Building Construction – Accessibility & Usability of the Built Environment’. In its Introduction, ISO 21542 is directly linked to the U.N. Convention … almost like an umbilical cord. The scope of this Standard currently covers public buildings. As the Accessibility Agenda in the U.N. Convention is very broad … much standardization work remains to be finished at international level.
The correct term … Accessibility for All … has been defined in ISO 21542 as including … ‘access to buildings, circulation within buildings and their use, egress from buildings in the normal course of events, and evacuation in the event of an emergency’.
A note at the beginning of the standard also clarifies that Accessibility is an independent activity, i.e. assistance from another person should not be necessary … and that there should be an assurance of individual health, safety and welfare during the course of those (accessibility-related) activities.
In order to fulfil India’s legal obligations as a State Party to the U.N. Convention on the Rights of Persons with Disabilities … adequate Design Guidance on Accessibility must be included in the Proposed New Part 11, supported by ISO 21542.
In addition, the Bureau of Indian Standards (BIS) should immediately adopt ISO 21542 as the Indian National Standard on Accessibility for All … IS / ISO 21542.
[ I made many references to this issue during the FSAI Conferences in India ! ]
.
7. Fire Safety & Protection for All in Sustainable Indian Buildings ?
Yes … there is 1 mention of ‘fire safety’ and 40 other references to ‘fire’ in the Proposed New Part 11 … but no design guidance. Why not ?
You should be aware that there is a fundamental conflict between Sustainable Building Design Strategies and the current state-of-the-art in Fire Engineering Design. As a good example … for cooling, heating and/or ventilation purposes in a sustainable building, it is necessary to take advantage of natural patterns of air movement in that building. On the other hand, fire engineers in private practice, and fire prevention officers in Authorities Having Jurisdiction (AHJ’s), will demand that building spaces be strictly compartmented in order to limit the spread of fire and smoke … thereby dramatically interfering with those natural patterns of air movement.
In everyday practice, there is a vast chasm in understanding and communication between these two very different design disciplines. As a result, serious compromises are being enforced on Sustainability Building Performance. If, on the other hand, adequate independent technical control is absent on the site of a Sustainable Building … it is the fire safety and protection which is being seriously compromised.
A range of critical fire safety issues (fatal, in the case of firefighters) are also arising with the Innovative Building Products and Systems being installed in Sustainable Buildings.
Because the emphasis is on pre-construction design ‘intent’ rather than the ‘real’ performance of the completed and occupied building … all of these problems are being conveniently ignored, and they remain hidden from everybody’s view.
This must be addressed in the Proposed New Part 11.
[ I made many references to this issue during the FSAI Conferences in India ! ]
.
C. J. Walsh – Consultant Architect, Fire Engineer & Technical Controller – Managing Director, Sustainable Design International Ltd. – Ireland, Italy & Turkey.