fire service support infrastructure

NIST WTC Recommendations 21-24 > Improved Firefighting

Previous Posts in This Series …

2011-10-25:  NIST’s Recommendations on the 9-11 WTC Building Collapses … GROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30)

2011-11-18:  NIST WTC Recommendations 4-7 > Structural Fire EnduranceGROUP 2.  Enhanced Fire Endurance of Structures – Recommendations 4, 5, 6 & 7

2011-11-24:  NIST WTC Recommendations 8-11 > New Design of StructuresGROUP 3.  New Methods for Fire Resisting Design of Structures – Recommendations 8, 9, 10 & 11

2011-11-25:  NIST WTC Recommendations 12-15 > Improved Active ProtectionGROUP 4.  Improved Active Fire Protection – Recommendations 12, 13, 14 & 15

2011-11-30:  NIST Recommendations 16-20 > Improved People EvacuationGROUP 5.  Improved Building Evacuation – Recommendations 16, 17, 18, 19 & 20

.

2011-12-04:  SOME PRELIMINARY COMMENTS …

  1.     Such is the pervasively high level of both direct and indirect fire losses, not all of which have yet been identified … that a force of committed firefighters, having sufficient numbers and properly trained and equipped, is a valuable social asset in any community … and one not to be weakened or diluted easily.

  2.     Lack of discipline among firefighters was an issue during the day of 9-11 (11th September 2011) in New York …

In real life or death situations, however, discipline is essential … but competent and efficient command, control and co-ordination … facilitated by reliable systems of communication (human and electronic) … are critical.

And accurate, real time information about what is happening at a building fire incident of whatever scale … i.e. situation awareness … is a tool which propels forward and encourages the effective functioning of both the firefighter and the user/occupant evacuating the building.

  3.     A serious gap, internationally … a deep cavern … in the awareness, training and education of firefighters at all levels … is the issue of ‘disability’ and the varying range of abilities in a typical building user/occupant profile.

It is not fully appreciated by firefighters that certain people may die if placed in a standard fireman’s lift position … or, if shouted and screamed at, many people may have no understanding whatever of the firefighter’s intended meaning … or that, in order for everyone to reach a place of safety, it is necessary for firefighters to ensure that safe, accessible routes from the building (i.e. clear of all obstacles, e.g. fire hose lines) are prepared for, thoroughly, in advance of any fire incident … and actually provided should one occur.

Panic attacks during an emergency do exist !   Standard movement times for people evacuating do not exist !!   And … firefighters may themselves become impaired during a building fire incident !!!

  4.     As for building designers … where do I even start ??   Much could, and should, be done in the design and initial construction of a building to assure firefighter safety.  But … where does any requirement to consider this issue appear in national building codes/regulations ??

I have already discussed this matter in relation to European Union (EU) Regulation 305/2011 on Construction Products, where such a requirement is contained in Basic Requirement for Construction Works 2: ‘Safety in Case of Fire’ (Annex I).

.

2005 NIST WTC RECOMMENDATIONS

GROUP 6.  Improved Emergency Response

Technologies and procedures for emergency response should be improved to enable better access to buildings, response operations, emergency communications, and command and control in large-scale emergencies.

NIST WTC Recommendation 21.

NIST recommends the installation of fire-protected and structurally hardened elevators to improve emergency response activities in tall buildings by providing timely emergency access to responders and allowing evacuation of mobility-impaired building occupants.  Such elevators should be installed for exclusive use by emergency responders during emergencies.*  In tall buildings, consideration also should be given to installing such elevators for use by all occupants.  NIST has found that the physiological impacts on emergency responders of climbing numerous (e.g. 20 or more) storeys makes it difficult to conduct effective and timely firefighting and rescue operations in building emergencies without functioning elevators.  The use of elevators for these purposes will require additional operating procedures and protocols, as well as a requirement for release of elevator door restrictors by emergency response personnel.

[ * F-44  The access time for emergency responders, in tall building emergencies where elevators are not functioning and only stairways can be used, averages between 1 minute and 2 minutes per floor, which, for example, corresponds to between 1½ and 2 hours (depending on the amount of gear and equipment carried) to reach the 60th floor of a tall building.  Further, the physiological impact on the emergency responders of climbing more than 10 to 12 floors in a tall building makes it difficult for them to immediately begin aggressive firefighting and rescue operations.]

Affected Standards:  ASME A 17, ANSI 117.1, NFPA 70, NFPA 101, NFPA 1221, NFPA 1500, NFPA 1561, NFPA 1620, and NFPA 1710.  Model Building and Fire Codes:  The standards should be adopted in model building and fire codes by mandatory reference to, or incorporation of, the latest edition of the standard.

NIST WTC Recommendation 22.

NIST recommends the installation, inspection, and testing of emergency communications systems, radio communications, and associated operating protocols to ensure that the systems and protocols:  (1) are effective for large-scale emergencies in buildings with challenging radio frequency propagation environments;  and (2) can be used to identify, locate, and track emergency responders within indoor building environments and in the field.  The federal government should co-ordinate its efforts that address this need within the framework provided by the SAFECOM programme of the Department of Homeland Security.

a.     Rigorous procedures, including pre-emergency inspection and testing, should be developed and implemented for ensuring the operation of emergency communications systems and radio communications in tall buildings and other large structures (including tunnels and subways), or at locations where communications are difficult.

b.     Performance requirements should be developed for emergency communications systems and radio communications that are used within buildings or in built-up urban environments, including standards for design, testing, certification, maintenance, and inspection of such systems.

c.     An interoperable architecture for emergency communication networks – and associated operating protocols – should be developed for unit operations within and across agencies in large-scale emergencies.  The overall network architecture should cover local networking at incident sites, dispatching, and area-wide networks, considering: (a) the scale of needed communications in terms of the number of emergency responders using the system in a large-scale emergency and the organizational hierarchy; and (b) challenges associated with radio frequency propagation, especially in buildings; (c) interoperability with existing legacy emergency communications systems (i.e. between conventional two-way systems and newer wireless network systems); and (d) the need to identify, locate, and track emergency responders at an incident site.

Affected Standards:  FCC, SAFECOM, NFPA Standards on Electronic Safety Equipment, NFPA 70, NFPA 297, and NFPA 1221.  Model Building Codes:  The standards should be adopted in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.

NIST WTC Recommendation 23.

NIST recommends the establishment and implementation of detailed procedures and methods for gathering, processing, and delivering critical information through integration of relevant voice, video, graphical, and written data to enhance the situational awareness of all emergency responders.  An information intelligence sector* should be established to co-ordinate the effort for each incident.

[ * F-45  A group of individuals that is knowledgeable, experienced, and specifically trained in gathering, processing, and delivering information critical for emergency response operations, and is ready for activation in large and/or dangerous events.]

Affected Standards:  National Incident Management System (NIMS), NRP, SAFECOM, FCC, NFPA Standards on Electronic Safety Equipment, NFPA 1221, NFPA 1500, NFPA 1561, NFPA 1620, and NFPA 1710.  Model Building Codes:  The standards should be adopted in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.

NIST WTC Recommendation 24.

NIST recommends the establishment and implementation of codes and protocols for ensuring effective and uninterrupted operation of the command and control system for large-scale building emergencies.

a.     State, local, and federal jurisdictions should implement the National Incident Management System (NIMS).  The jurisdictions should work with the Department of Homeland Security to review, test, evaluate, and implement an effective unified command and control system.  NIMS addresses interagency co-ordination and establishes a response matrix – assigning lead agency responsibilities for different types of emergencies, and functions.  At a minimum, each supporting agency should assign an individual to provide co-ordination with the lead agency at each incident command post.

b.     State, local, and federal emergency operations centres (EOC’s) should be located, designed, built, and operated with security and operational integrity as a key consideration.

c.     Command posts should be established outside the potential collapse footprint of any building which shows evidence of large multi-floor fires or has serious structural damage.  A continuous assessment of building stability and safety should be made in such emergencies to guide ongoing operations and enhance emergency responder safety.  The information necessary to make these assessments should be made available to those assigned responsibility (see related Recommendations 15 and 23).

d.     An effective command system should be established and operating before a large number of emergency responders and apparatus are dispatched and deployed.  Through training and drills, emergency responders and ambulances should be required to await dispatch requests from the incident command system and not to self-dispatch in large-scale emergencies.

e.     Actions should be taken via training and drills to ensure a co-ordinated and effective emergency response at all levels of the incident command chain by requiring all emergency responders that are given an assignment to immediately adopt and execute the assignment objectives.

f.     Command post information and incident operations data should be managed and broadcast to command and control centres at remote locations so that information is secure and accessible by all personnel needing the information.  Methods should be developed and implemented so that any information that is available at an interior information centre is transmitted to an emergency responder vehicle or command post outside the building.

Affected Standards:  National Incident Management System (NIMS), NRP, SAFECOM, FCC, NFPA Standards on Electronic Safety Equipment, NFPA 1221, NFPA 1500, NFPA 1561, NFPA 1620, and NFPA 1710.  Model Building Codes:  The standards should be adopted in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.

.

.

END

NIST WTC Recommendations 4-7 > Structural Fire Endurance

First Post in This Series …

2011-10-25:  NIST’s Recommendations on the 9-11 WTC Building Collapses … GROUP 1. Increased Structural Integrity – Recommendations 1, 2 & 3 (out of 30)

.

2011-11-18:  SOME PRELIMINARY COMMENTS …

  1.     Before launching into the next Group of NIST WTC Recommendations, it would be useful to distinguish between the following technical terms … which have been adapted from ISO/TR 10158: ‘Principles and Rationale Underlying Calculation Methods in Relation to Fire Resistance of Structural Elements’

Real Fire:  A fire which develops in a building and which is influenced by such factors as the type of building and its occupancy;  the combustible content (fire load);  the ventilation, geometry and thermal properties of the fire compartment, or building space (should no fire compartmentation exist);  the fire suppression systems in the building and the actions of the fire services.

Real Fires are complex phenomena.  Consequently, in structural fire engineering, idealized versions of ‘real fires’ are employed.

Experimental Fire:  A full or reduced scale fire with specified and controlled characteristics.

Design Fire:  A fire with specified exposure data intended for use in connection with structural fire engineering calculations.

A Design Fire may either be representative of the thermal exposure described by the standard time-temperature-pressure relationship in an International/European/National Standard, or some non-standard exposure intended to simulate particular fire exposure conditions.

However, in SDI Technical Guidance Note 95/102: ‘Proper Evidence of a Fire Test Result within the European Economic Area (EEA)’, issued on 22 May 1995, I included the following caution …

#1.7  A Fire Test in a Fire Test Laboratory, involving exposure of a test specimen or prototype to ‘test fire’ conditions, gives only a limited indication of:  (a) the likely performance of a particular product, material or component when exposed to ‘real fire’ conditions;  and (b) the suitability of a product, material or component for a particular end use.

  2.     In conventional fire engineering, much confusion arises because of a failure to properly distinguish between these two concepts …

Fire Resistance

The inherent capability of a building assembly, or an ‘element of construction’, to resist the passage of heat, smoke and flame for a specified time during a fire.

Structural Reliability

The ability of a structural system to fulfil its design purpose, for a specified time, under the actual environmental conditions encountered in a building.

[ In structural fire engineering, the concern must be that the structure will fulfil its purpose, both during the fire – and for a minimum period afterwards, during the ‘cooling phase’.]

  3.     Therefore, with regard to Recommendation 6 … it is more correct and precise to refer to ‘Steel Fire Protection Systems’, rather than to ‘steel fire resisting materials’ !   AND … the same questions must be asked about All Lightweight Steel Fire Protection Systems … not just the sprayed systems.

Lightweight Fire Protection Systems are also used to protect concrete in buildings and tunnels.

  4.     These 2005 NIST Recommendations will later be confirmed, and further reinforced, by the 2008 NIST Recommendations.  Bringing Recommendation 7, below, closer to home … it is interesting to note that a very necessary discussion on the technical adequacy of the approach taken to structural performance in fire … in both Technical Guidance Document B (Ireland) and Approved Document B (England & Wales) … has yet not even commenced !

.

2005 NIST WTC RECOMMENDATIONS

GROUP 2.  Enhanced Fire Endurance of Structures

The procedures and practices used to ensure the fire endurance of structures should be enhanced by improving the technical basis for construction classifications and fire resistance ratings, improving the technical basis for standard fire resistance testing methods, use of the ‘structural frame’ approach to fire resistance ratings, and developing in-service performance requirements and conformance criteria for sprayed fire resisting materials.

NIST WTC Recommendation 4.

NIST recommends evaluating, and where needed improving, the technical basis for determining appropriate construction classifications and fire rating requirements (especially for tall buildings) – and making related code changes now, as much as possible – by explicitly considering factors including: *

[ * F-23  The construction classification and fire rating requirements should be risk-consistent with respect to the design-basis hazards and the consequences of those hazards.  The fire rating requirements, which were originally developed based on experience with buildings less than 20 storeys in height, have generally decreased over the past 80 years since historical fire data for buildings suggest considerable conservatism in those requirements.  For tall buildings, the likely consequences of a given threat to an occupant on the upper floors are more severe than the consequences to an occupant on the first floor or the lower floors.  For example, with non-functioning elevators, both of the time requirements are much greater for full building evacuation from upper floors and emergency responder access to those floors.  It is not clear how the current height and areas tables in building codes consider the technical basis for the progressively increasing risk to an occupant on the upper floors of tall buildings that are much greater than 20 storeys in height.]

  • timely access by emergency responders and full evacuation of occupants, or the time required for burnout without partial collapse ;
  • the extent to which redundancy in active fire protection systems (sprinklers and standpipe, fire alarm, and smoke management) should be credited for occupant life safety ; *

[ * F-24  Occupant life safety, prevention of fire spread, and structural integrity are considered separate safety objectives.]

  • the need for redundancy in fire protection systems that are critical to structural integrity ; *

[ * F-25  The passive fire protection system (including fire protection insulation, compartmentation, and fire stopping) and the active sprinkler system each provide redundancy for maintaining structural integrity in a building fire, should one of the systems fail to perform its intended function.]

  • the ability of the structure and local floor systems to withstand a maximum credible fire scenario* without collapse, recognizing that sprinklers could be compromised, not operational, or non-existent ;

[ * F-26  A maximum credible fire scenario includes conditions that are severe, but reasonable to anticipate, conditions related to building construction, occupancy, fire loads, ignition sources, compartment geometry, fire control methods, etc., as well as adverse, but reasonable to anticipate operating conditions.]

  • compartmentation requirements (e.g. 1,200 sq.m *) to protect the structure, including fire rated doorsets and automatic enclosures, and limiting air supply (e.g. thermally resisting window assemblies) to retard fire spread in buildings with large, open floor plans ;

[ * F-27  Or a more appropriate limit, which represents a reasonable area for active fire fighting operations.]

  • the effect of spaces containing unusually large fuel concentrations for the expected occupancy of the building ;   and
  • the extent to which fire control systems, including suppression by automatic or manual means, should be credited as part of the prevention of fire spread.

Adoption of this Recommendation will allow building codes to distinguish the risks associated with different building heights, fuel concentrations, and fire protection systems.  Research is needed to develop the data and evaluate alternative proposals for construction classifications and fire ratings.  Model Building Codes:  A comprehensive review of current construction classifications and fire rating requirements and the establishment of a uniform set of revised thresholds with a firm technical basis that considers the factors identified above should be undertaken.*

[ * F-28  The National Fire Protection Association (NFPA) 5000 model code and the International Building Code (IBC) both recognize the risks associated with different building heights and accepted changes in 2001 and 2004, respectively.  Both model codes now require that buildings 126 metres and higher have a minimum 4 hour structural fire resistance rating.  The previous requirement was 2 hours.  The change provides increased fire resistance for the structural system leading to enhanced tenability of the structure and gives firefighters additional protection while fighting a fire.  While NIST supports these changes as an interim step, NIST believes that it is essential to complete a comprehensive review that will establish a firm technical basis for construction classifications and fire rating requirements.]

NIST WTC Recommendation 5.

NIST recommends that the technical basis for the century-old standard for fire resistance testing of components, assemblies and systems be improved through a national effort.  Necessary guidance also should be developed for extrapolating the results of tested assemblies to prototypical building systems.  A key step in fulfilling this Recommendation is to establish a capability for studying and testing components, assemblies, and systems under realistic fire and load conditions.

This effort should address the technical issues listed below: *

[ * F-29  The technical issues were identified from the series of four fire resistance tests of the WTC Floor system, and the review and analysis of relevant documents that were conducted as part of this Investigation.]

a.     Criteria and test methods for determining:

  • structural limit states, including failure, and means for measurement ;
  • effect of scale of test assembly versus prototype application, especially for long-span structures that significantly exceed the size of test furnaces ;
  • effect of restraining thermal expansion (end-restraint conditions) on test results, especially for long-span structures that have greater flexibility ;
  • fire resistance of structural connections, especially the fire protection required for a loaded connection to achieve a specified rating ; *

[ * F-30  There is a lack of test data on the fire resistance ratings of loaded connections.  The fire resistance of structural connections is not rated in current practice.  Also, standards and codes do not provide guidance on fire protection requirements for structural connections when the connected members have different fire resistance ratings.]

  • effect of the combination of loading and exposure (time-temperature profile) required to adequately represent expected conditions ;
  • the repeatability and reproducibility of test results (typically, results from a single test are used to determine the rating for a component or assembly) ;   and
  • realistic ratings for structural assemblies made with materials that have improved elevated temperature properties (strength, modulus, creep behaviour).

b.     Improved procedures and guidance to analyze and evaluate existing data from fire resistance tests of building components and assemblies for use in qualifying an untested building element.

c.     Relationships between prescriptive ratings and performance of the assembly in real fires.

Affected National and International Standards: * ASTM E 119, NFPA 251, UL 263, and ISO 834.  Model Building Codes:  The standards should be adopted in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.

[ * F-31  While the NIST Recommendations are focused mainly on U.S. national standards, each U.S. standard has counterpart international standards.  In a recent report (ISO/TMB AGS N 46), the International Organization for Standardization (ISO), through its Advisory Group for Security (AGS), has recommended that since many of the ISO standards for the design of buildings date back to the 1980’s, they should be reviewed and updated to make use of the studies done by NIST on the World Trade Center disaster, the applicability of new technology for rescue from high buildings, natural disasters, etc.  ISO’s Technical Advisory Group 8 co-ordinates standards work for buildings.]

NIST WTC Recommendation 6.

NIST recommends the development of criteria, test methods, and standards:  (1) for the in-service performance of Sprayed Fire Resisting Materials (SFRM, also commonly referred to as fire protection insulation) used to protect structural components;  and (2) to ensure that these materials, as installed, conform to conditions in tests used to establish the fire resistance rating of components, assemblies, and systems.

This should include:

  • Improved criteria and testing methodologies for the performance and durability of SFRM (e.g. adhesion, cohesion, abrasion, and impact resistance) under in-service exposure conditions (e.g. temperature, humidity, vibration, impact, with/without primer paint on steel*) for use in acceptance and quality control.  The current test method to measure the bond strength, for example, does not distinguish the cohesive strength from the tensile and shear adhesive strengths.  Nor does it consider the effect of primer paint on the steel surface.  Test requirements that explicitly consider the effects of abrasion, vibration, shock, and impact under normal service conditions are limited or do not exist.  Also, the effects of elevated temperatures on thermal properties and bond strength are not considered in evaluating the performance and durability of SFRM.

[ * F-32  NIST tests show that the adhesive strength of SFRM on steel coated with primer paint was a third to half of the adhesive strength on steel that had not been coated with primer paint.  The SFRM products used in the WTC towers were applied to steel components coated with primer paint.]

  • Inspection procedures, including measurement techniques and practical conformance criteria, for SFRM in both the building codes and fire codes for use after installation, renovation, or modification of all mechanical and electrical systems and by fire inspectors over the life of the building.  Existing standards of practice (AIA MasterSpec and AWCI Standard 12), often required by codes for some buildings need to be broadly applied to both new and existing buildings.  These standards may require improvements to address the issues identified in this Recommendation.
  • Criteria for determining the effective uniform SFRM thickness – thermally equivalent to the variable thickness of the product as it is actually applied – that can be used to ensure that the product in the field conforms to the near uniform thickness conditions in the tests used to establish the fire resistance rating of the component, assembly, or system.  Such criteria are needed to ensure that the SFRM, as installed, will provide the intended performance.
  • Methods for predicting the effectiveness of SFRM insulation as a function of its properties, the application characteristics, and the duration and intensity of the fire.
  • Methods for predicting service life performance of SFRM under in-service conditions.

Affected Standards:  AIA MasterSpec and AWCI Standard 12 for field inspection and conformance criteria; ASTM standards for SFRM performance criteria and test methods.  Model Building Codes:  The standards should be adopted in model building codes by mandatory reference to, or incorporation of, the latest edition of the standard.  (See Recommendation 10 for more on this issue.)

NIST WTC Recommendation 7.

NIST recommends the adoption and use of the ‘structural frame’ approach to fire resistance ratings.  This approach requires that structural members – such as girders, beams, trusses, and spandrels having direct connection to the columns, and bracing members designed to carry gravity loads – be fire protected to the same fire resistance rating as columns.  This approach is currently required by the International Building Code (IBC), one of the model codes, and is in the process of adoption by NFPA 5000, the other model code.  This requirement ensures consistency in the fire protection provided to all of the structural elements that contribute to overall structural stability.*  State and local jurisdictions should adopt and enforce this requirement.

[ * F-33  Had this requirement been adopted by the 1968 New York City building code, the WTC floor system, including its connections, would have had the 3 hour rating required for the columns since the floors braced the columns.]

.

.

END

Fixing ‘Priory Hall’ in Dublin – Practical Solutions Needed Now !

2011-10-18:  A large ‘can of worms’ has recently been opened in Ireland …

For the last few days, including today, I have been listening intently to Joe Duffy on the RTE Radio ‘Liveline’ Programme at lunchtime.  Joe is being very cautious because he cannot quite believe his ears … either about the unfolding harrowing events for occupants in ‘Priory Hall’, Donaghmede, Dublin 13 – a Private, Multi-Storey Apartment Development – or the tales and anecdotes about Irish Building Sites during the Celtic Tiger Years.

This will be of no consolation to anybody … but the big surprise, for me, is that there is so much public shock.  ‘Priory Hall’ is the Tip of the Iceberg !   Ireland’s current dysfunctional approach to the development of Our(!) Built Environment … has been designed (for want of a better word) in a chaotic, haphazard and malevolent way … to end up in exactly the sort of mess which we are all now witnessing in North County Dublin.

Just to be clear … what has been happening in the Irish Construction Industry, during the boom years, has been happening for twenty years all over the country … more precisely, since the introduction of Legal National Building Regulations, with NO Effective Building Control, in 1991 … and, before that again, in those parts of this jurisdiction, outside of the major urban areas having Legal Building Bye-Laws, and Effective Building Control, i.e. mandatory inspections by competent local authority personnel at the foundation level and drainage level of all building sites … and, depending on the type of project, occasional or frequent inspections above ground level.

[ 1991:  Statutory Instrument No.304 of 1991 – Building Control Act, 1990 (Commencement Order), 1991;  Statutory Instrument No.305 of 1991 – Building Control Regulations, 1991;  Statutory Instrument No.306 of 1991 – Building Regulations, 1991 ]

And the biggest joke of all … is that the sum of the many resources, both human and material, required to repair sub-standard construction throughout Ireland … will count as a positive contribution towards the economic indicator of GDP (Gross Domestic Product) !   FUBAR

.

Colour photograph showing 'Priory Hall' ... a private, multi-storey apartment development located in North County Dublin, Ireland. Click to enlarge.
Colour photograph showing 'Priory Hall' ... a private, multi-storey apartment development located in North County Dublin, Ireland. Click to enlarge.

.

PRACTICAL SOLUTIONS NEEDED NOW

What I have not been hearing from the radio, or reading in the newspapers, is practical solutions.

Lest there be any doubt … this is one of the professional services we provide at Sustainable Design International !

So … how do we fix Priory Hall as the situation now presents itself … in such a way that, as soon as it is practicable, a satisfactory level of long-term safety, protection, convenience and comfort will be provided for the occupants of Priory Hall … and the social wellbeing of the local community, there, can be restored.

Afterwards … we can worry about who’s responsible, and about the reasons for the many ‘system’ failures in Ireland.

.

FIXING ‘PRIORY HALL’ IN DUBLIN

The following list of practical suggestions … a simple roadmap … is addressed to the Owners and Occupants of Apartments in Priory Hall.

As they have a large vested interest in the problems of Priory Hall … either directly or indirectly … no assurances or undertakings should be accepted, on face value, from either Dublin City Council (DCC) or the Department of the Environment, Community & Local Government (DECLG) … or their representatives.

     1.  Informed Consent of Apartment Owners and Occupants

Demand that the Informed Consent of the Owner/Occupant of an Apartment is required, in writing, before any necessary Corrective/Repair/Refurbishment Works are carried out …

Informed Consent:  Consent freely obtained – without threats or improper inducements – after appropriate disclosure to a person of relevant, adequate and easily assimilated information in a form and language understood by that person.

     2.  ‘As Constructed’ Drawings & Specification of Entire Development

If they exist … we’re on the way !   But, if they don’t exist … and they may not … demand that an ‘As Constructed’ Survey of the Entire Development be carried out immediately.

Demand to see a copy of the Detailed ‘As Constructed’ Drawings, and Specification, for the Entire Development.

CHECK the adequacy of the Detailed Drawings and Specification !

At this stage, remember … all of the emphasis must now be placed on actual construction … not on paperwork !   The ‘As Constructed’ Survey Drawings and Specification are only a means towards a satisfactory end … that’s all !!

     3.  Failures to Properly Comply with Current Building Regulation Requirements A to M (Second Schedule to Irish Building Regulations)

Demand to see a Detailed Schedule of the many failures to properly comply with current Building Regulation Requirements, i.e. Parts A to M in the Second Schedule to the Building Regulations, as amended.

Do not entertain, even for a moment, any discussion about past legal building regulation requirements, which were in force at the time of initial design or construction !

An important point to note !   The Guidance Texts in, for example, Technical Guidance Document B: ‘Fire Safety’ are merely that … GUIDANCE !   This guidance is not infallible … and in a few respects, is entirely inadequate … for example, when dealing with the structural performance of buildings during conditions of fire, and the ‘cooling phase’ immediately afterwards … and the fire evacuation of people with activity limitations, in which case the guidance actually ensures that fire evacuation is made extremely difficult, if not prevented altogether !

Do not be sucked in to any conversations about what is stated, or not stated, in the Technical Guidance Documents.  This is irrelevant.  The Law mandates proper compliance with the Requirements !

Some people may even attempt to quote from the Building Regulation Approved Documents for England & Wales.  Just tell them to take a long jump off a short pier … suggest Howth Harbour !

Become very, very suspicious whenever there is a use of, or reference to, the term ‘Substantial Compliance’ !!

CHECK the adequacy of this Detailed Schedule !   And … ensure that it is Comprehensive !!

     4.  The Necessary Corrective/Repair/Refurbishment Works

Demand to see Full Detailed Information, in the form of annotated drawings and descriptive texts, etc., etc … on the exact nature, timetable and phasing of all of the Corrective/Repair/Refurbishment Works which are necessary to effectively solve the serious problems in the Development.

Beware of decorative solutions, which look good to a superficial visual inspection in ambient conditions … but don’t actually solve anything !

CHECK the adequacy of this Full Detailed Information !

     5.  Independent Technical Control of Construction Works

Demand only Category A Construction Execution of the necessary Corrective/Repair/Refurbishment Works …

Category A Construction Execution:

(a)  Supervision of the works is exercised by appropriately qualified and experienced personnel from the principal construction organization ;

(b)  Regular inspections, by appropriately qualified and experienced personnel familiar with the design and independent of the construction organization(s) … and other vested interests … are carried out to verify that the works are being executed in accordance with the design.

Demand receipt of a clear undertaking, in writing, that this will be the case … before any Corrective/Repair/Refurbishment Works commence.

And remember these words from the 2005 Final Report of the U.S. National Institute of Standards & Technology (NIST) on the 9-11 World Trade Center Tower Collapses …

” NIST urges state and local agencies to rigorously enforce building codes and standards since such enforcement is critical to ensure the expected level of safety.  Unless they are complied with, the best codes and standards cannot protect occupants, emergency responders, or buildings.”

CHECK the adequacy of the Proposed Method of Independent Technical Control during execution of the Corrective/Repair/Refurbishment Works !

     6.  Meeting & Discussion with Other Owners/Occupants

Do not act alone … meet the other Owners/Occupants, and discuss issues with them.  Share and collate all available information together.  Try to identify information gaps.  If you do not understand something … ask !

When, and only when, you are happy … signal your Informed Consent that works should commence.

     7.  Commencement of Corrective/Repair/Refurbishment Works

Visit the Construction Site Office regularly … to show that you are taking a keen interest in what is happening.  Keep your eyes and ears wide open.

Expect that you will not be permitted to just wander around the Site.  Construction Sites are one of the most hazardous ‘workplaces’ in this country !

CHECK the adequacy of the Independent Technical Control actually being undertaken.

Demand to be updated, regularly, and at the very least on the progress of Corrective/Repair/Refurbishment Works at your Apartment … in the Common Areas of your Block … and throughout the full extent of the Approach Routes to your Block Entrances and Exits.

.

.

Advisory Note:  Should you, or the Residents’ Committee of your Building or Development, be concerned about any matter discussed in this Post … please contact C.J. Walsh  by e-mail: cjwalsh@sustainable-design.ie  or by phone: (01) 8386078 / +353 1 8386078.

.

.

END  (for now, but to be continued soon !)

Firefighter Exposure To Smoke Particulates – New U.S. Research

To Properly Consider Firefighter Safety:  It is not ‘sufficient’ just to distribute Personal Protection Equipment (PPE) to firefighters … an adequate Fire Service Support Infrastructure is required.  And … it is NO LONGER ethically acceptable to ignore this issue in the design and construction of buildings !

In Europe … it should be noted that part of  Essential Requirement 2: ‘Safety in Case of Fire’ … from European Union (EU) Council Directive 89/106/EEC, of 21 December 1988, on the approximation of laws, regulations and administrative provisions of the Member States relating to Construction Products … states the following …

‘ The construction works must be designed and built in such a way that in the event of an outbreak of fire … the safety of rescue teams is taken into consideration.’

I will return to building design and construction in a later post.

.

Now, however … reproduced below is the EXECUTIVE SUMMARY from a recent important Report by Underwriters Laboratories Inc. (USA) … comprising 390 Pages and weighing in at a mighty 10.54 Mb … too large to be presented here !   So sorry !!

As always … we recommend that you download the UL Report yourselves … and have a long, careful read.  It can be viewed and/or downloaded at this address … http://www.ul.com/global/eng/pages/offerings/industries/buildingmaterials/fire/fireservice/smokeparticulates

.

FIREFIGHTER EXPOSURE TO SMOKE PARTICULATES

(DHS AFG Grant #EMW-2007-FP-02093)

Final Report

Project Number: 08CA31673 – File Number: IN 15941

1 April, 2010

Prepared by:

 Thomas Fabian, Ph.D., Jacob L. Borgerson, Ph.D, Stephen I. Kerber, M.S., Pravinray D. Gandhi, Ph.D., P.E.

Underwriters Laboratories Inc.

C. Stuart Baxter, Ph.D., Clara Sue Ross, M.D., J.D., James E. Lockey M.D., M.S.

University of Cincinnati

James M. Dalton, M.Arch.

Chicago Fire Department

.

INTRODUCTION

The potential for firefighters to experience acute and/or chronic respiratory health effects related to exposures during firefighting activities has long been recognized.  Specific exposures of concern for firefighters, because of their potential respiratory toxicity, include:

  1. Asphyxiants, such as Carbon Monoxide, Carbon Dioxide and Hydrogen Sulphide ;
  2. Irritants, such as Ammonia, Hydrogen Chloride, Particulates, Nitrogen Oxides, Phenol and Sulphur Dioxide ;
  3. Allergens ;    and
  4. Carcinogens, such as Asbestos, Benzene, Styrene, Polycyclic Aromatic Hydrocarbons and certain Heavy Metals.

An additional cardiovascular risk factor that is receiving increasing attention is exposure to respirable particles in the ultra-fine range (particles less than 0.1 micron in diameter), which have been detected in smoke.  Exposure to these gaseous and particulate agents has been linked to acute and chronic effects resulting in increased firefighter mortality and morbidity (higher risk of specific cancers and cardiovascular disease).

Currently, gaps exist in the knowledge concerning the size distribution of smoke particles generated in fires and the nature of the chemicals absorbed on the particles’ surfaces.  Some gaseous effluents may also condense on protection equipment and exposed skin, leaving an oily residue or film.  These chemicals can pose a significant threat to firefighter health directly (via the skin and eyes, or by inhalation) or following dermal absorption.  This fire research study fills gaps identified in previous studies on firefighters’ exposure to combustion products.  The study focuses on gaseous effluents and smoke particulates generated during residential building and automobile fires and subsequent contact exposure resulting from residual contamination of Personal Protection Equipment (PPE).

The information developed from this research will provide a valuable background for interpreting fire hazards and can be used by …

     a)  the Medical Community for advancing their understanding of the epidemiological effects of smoke exposure ;

     b)  First Responders for developing situational assessment guidelines for Self-Contained Breathing Apparatus (SCBA) usage, Personal Protection Equipment cleaning regimen, and identifying the importance of personal hygiene following fire effluent exposure ;

     c)  Organizations such as NIOSH (National Institute for Occupational Safety & Health) and NFPA (National Fire Protection Association) for developing new test method standards and performance criteria for respirators used by first responders, and the care and maintenance of Personal Protection Equipment (PPE).

.

METHODOLOGY

This study investigated and analyzed the combustion gases and particulates generated from three scales of fires:

     –  Residential Building and Automobile Fires ;

     –  Simulated Full-Scale Fire Tests ;    and

     –  Material Based Small-Scale Fire Tests.

Material-level tests were conducted to investigate the combustion of forty-three commonly used residential building construction materials, residential room contents and furnishings, and automobile components under consistent, well-controlled radiant heating conditions.  In these tests, material based combustion properties including weight loss rate, heat and smoke release rates, smoke particle size and count distribution, and effluent gas and smoke composition were characterized for a variety of natural, synthetic, and multi-component materials under flaming conditions.  The results from these tests were used to assess the smoke contribution of individual materials.

Nine full-scale fire tests representing individual room fires, an attic fire, deck and automobile fires were conducted at Underwriters Laboratories’ large-scale fire test laboratory to collect and analyze the gas effluents, smoke particulates, and condensed residues produced during fire growth, suppression and overhaul under controlled, reproducible laboratory conditions.  During overhaul, firefighter personal atmospheres were sampled and analyzed for gases and smoke particles.  Smoke particle analysis included mass and size distributions, and inorganic elemental composition.  These tests also served as a platform for developing and refining the condensed residue sampling techniques for field usage.

Note:  Overhaul … The final phase of firefighting, which involves searching out and extinguishing any hidden fire(s), preserving evidence and restoring the fire scene to a secure state at the conclusion of firefighting operations.

Over a period of four months, Chicago Fire Department designated personnel conducted personal gas monitoring and collected personal aerosol smoke samples at residential fires (knockdown, ventilation and overhaul).  Replaceable personal protection components (gloves and hoods) used by the firefighters during this time period were analyzed to identify the chemical composition of accumulated smoke residue.

Collected data was forwarded to the University of Cincinnati College of Medicine to assess the potential adverse health effects of the observed gaseous effluents and smoke particles on fire service personnel.

.

KEY FINDINGS

The key findings of the research were as follows:

General

  • Concentrations of combustion products were found to vary tremendously from fire to fire depending upon the size, the chemistry of materials involved, and the ventilation conditions of the fire.

Material-Scale Tests

  • The type and quantity of combustion products (smoke particles and gases) generated depended on the chemistry and physical form of the materials being burned.
  • Synthetic materials produced more smoke than natural materials.
    • The most prolific smoke production was observed for styrene-based materials commonly found in residential households and automobiles.  These materials may be used in commodity form (e.g. disposable plastic glasses and dishes), expanded form for insulation, impact modified form such as HIPS (e.g. appliances and electronics housing), co-polymerized with other plastics such as ABS (e.g. toys), or co-polymerized with elastomers such as styrene-butadiene rubber (e.g. tires).
    • Vinyl polymers also produced considerable amounts of smoke.  Again these materials are used in commodity form (e.g. PVC pipe) or plasticized form (e.g. wiring, siding, resin chairs and tables).
    • As the fraction of synthetic compound was increased in a wood product (either in the form of adhesive or mixture such as for wood-plastic composites), smoke production increased.
    • Average particle sizes ranged from 0.04 to 0.15 microns, with wood and insulation generating the smallest particles.
    • For a given particle size, synthetic materials will generate approximately 12.5 times more particles per mass of consumed material than wood based materials.
  • Combustion of the materials generated asphyxiants, irritants, and airborne carcinogenic species that could be potentially debilitating.  The combination and concentrations of gases produced depended on the base chemistry of the material:
    • All of the materials formed water, carbon dioxide and carbon monoxide.
    • Styrene-based materials formed benzene, phenols, and styrene.
    • Vinyl compounds formed acid gases (HCl and HCN) and benzene.
    • Wood-based products formed formaldehyde, formic acid, HCN, and phenols.
    • Roofing materials formed sulphur gas compounds such as sulphur dioxide and hydrogen sulphide.

Large-Scale Tests

  • The same asphyxiants, irritants, and airborne carcinogenic species were observed as in material-level tests supporting the premise that gases generated in large-complex fires arise from individual component material contributions.
  • Ventilation was found to have an inverse relationship with smoke and gas production such that considerably higher levels of smoke particulates and gases were observed in contained fires than uncontained fires, and the smoke and gas levels were greater inside of contained structures than outside.
    • Recommended exposure levels (IDLH, STEL, TWA) were exceeded during fire growth and overhaul stages for various agents (carbon monoxide, benzene, formaldehyde, hydrogen cyanide) and arsenic.
    • Smoke and gas levels were quickly reduced by suppression activity.  However, they remained an order of magnitude greater than background levels during overhaul.
    • 99%+ of smoke particles collected during overhaul were less than 1 micron in diameter.  Of these, 97%+ were too small to be visible by the naked eye suggesting that ‘clean’ air was not really that clean.
  • While not the focus of this research, it should be noted that the ion alarm activated sooner than the photoelectric alarm in every room fire scenario (living rooms, bedroom and kitchen).  This is consistent with results reported in the Smoke Characterization Report for model flaming fire tests conducted in the smoke alarm fire test room.  Carbon monoxide alarm activation lagged behind both ion and photoelectric alarms, furthermore.

Field Events & Controlled Field Tests

  • Concentrations of certain toxic gases were monitored at field events during the course of normal firefighter duties.  These results were analyzed to determine:
    • Average gas concentrations and exposures calculated for the field events, which may be useful for estimating total exposure from repeated exposures during a firefighter’s career.
    • Potential gas concentration and exposures calculated for the field events, which may be useful for planning firefighter preparedness.
    • Gas exposures in excess of NIOSH IDLH, STEL, and OSHA TWA.  These were repeatedly observed at the monitored field events.  Carbon monoxide concentrations most often exceeded recommended exposure limits.  However, instances were observed where gases other than carbon monoxide exceeded recommended exposure limits – yet carbon monoxide did not.
  • Collected smoke particulates contained multiple heavy metals including arsenic, cobalt, chromium, lead, and phosphorous.
    • The NIOSH STEL concentration for arsenic was exceeded at one fire and possibly at a second.  Gas monitors would not provide warning for arsenic exposure.
  • Chemical composition of the smoke deposited and soot accumulated on firefighter gloves and hoods was virtually the same, except concentrations on the gloves were 100 times greater than the hoods.
    • Deposits contained lead, mercury, phthalates and PAH’s.
  • Carbon monoxide monitoring may provide the first line of a gas exposure defence strategy, but does not provide warning for fires in which carbon monoxide does not exceed recommended limits and other gases and chemicals do.
  • The OP-FTIR was difficult to successfully implement in the field and even for the controlled field events in passive mode.
    • While the OP-FTIR could be set-up in less than 2 minutes, it typically took as long as 5 to 10 minutes to start data collection.  This time frame is too long when compared to the aggressive time frames of fire suppression.
    • Poor thermal contrast led to insufficient signal-to-noise ratios.

Health Implications

  • Multiple asphyxiants (e.g. carbon monoxide, carbon dioxide and hydrogen sulphide), irritants (e.g. ammonia, hydrogen chloride, nitrogen oxides, phenol and sulphur dioxide), allergens (e.g. isocyanates), and chemicals carcinogenic for various tissues (e.g. benzene, chromium, formaldehyde and polycyclic aromatic hydrocarbons) were found in smoke during both suppression and overhaul phases.  Carcinogenic chemicals may act topically, following inhalation, or following dermal absorption, including from contaminated gear.
    • Concentrations of several of these toxicants exceeded OSHA regulatory exposure limits and/or recommended exposure limits from NIOSH or ACGIH.
    • Exposures to specific toxicants can produce acute respiratory effects that may result in chronic respiratory disease.
  • High levels of ultra-fine particles (relative to background levels) were found during both suppression and overhaul phases.
    • Exposure to particulate matter has been found to show a positive correlation with increased cardiovascular morbidity and mortality for general population studies.
    • The high efficiency of ultra-fine particle deposition deep into the lung tissue can result in release of inflammatory mediators into the circulation, causing toxic effects on internal tissues such as the heart.  Airborne toxics, such as metals and polycyclic aromatic hydrocarbons, can also be carried by the particles to the pulmonary interstitium, vasculature, and potentially subsequently to other body tissues, including the cardiovascular and nervous systems and liver.
  • Interactions between individual exposure agents could lead to additive or synergistic effects exacerbating adverse health effects.
  • Long-term repeated exposure may accelerate cardiovascular mortality and the initiation/progression of atherosclerosis.

.

FUTURE CONSIDERATIONS

Based upon the results of this Firefighter Exposure to Smoke Particulates Investigation, the following areas were identified for further research:

1.  Greater in-depth analysis of the obtained results in relation to previous studies such as those of Jankowic et al on Firefighter Exposure, LeMasters et al on Firefighter Cancer Epidemiologies, and the First Responders at the World Trade Center Collapses.

2.  Characterization of potential fire scene exposures including: (a) asphyxiants, (b) irritants, (c) allergens, and (d) carcinogens.

3.  Better definition of the potential long-term respiratory, cancer and cardiovascular health impacts of varied and complex mixes of exposures such as those identified in this report.  Such information could help guide decisions on the selection and utilization of respiratory protection, especially during overhaul activities.

4.  Determination of the relative contribution of respiratory and dermal absorption routes to exposure and adverse health risks of firefighters to combustion products.

5.  Factors determining coronary heart disease risk among firefighters.  Such studies could help elucidate the mechanistic link between ultra-fine particle exposure and coronary heart disease morbidity and mortality, and identify measures to decrease its impact on this population.

6.  Characterization of contaminants accumulated on firefighter protection equipment and the subsequent potential for firefighter exposures to these contaminants and resulting health effects.

7.  Usage and industrial hygiene practices related to firefighter protection equipment, including cleaning patterns, length of use and storage practices.

.

.

END

The Recent Major Emergency Response Fiascos in Ireland

Unless you have been living, for the past two or three months, in conditions similar to a detainee in the illegally occupied part of Cuba, called Guantánamo Bay … and you have been deprived of almost all sensory perception … you cannot have escaped (!) the fact that we have had a Major National Flood Emergency … followed by a Major National Snow Emergency … followed, again, by a National Flood & Water Emergency.  I kid you not !!!   But … the emergencies haven’t yet ended.  And … it’s not just the politicians … at national and local levels … who should bury their heads in shame.

It has been amply demonstrated that the relevant emergency-related institutions in this country are incompetent, disorganized and dysfunctional.  Focus your venomous attentions, as well, on the civil and public servants, administrative and technical staff, and private sector technical consultants who occupy space in these institutions.

Did you know that we actually have a National Directorate for Fire & Emergency Management (NDFEM), which is located deep within the Custom House … in the centre of Dublin City.  According to the NDFEM, a Major Emergency is …

‘ An incident which, usually with little or no warning, causes or threatens death or injury, serious disruption of essential services or damage to property, the environment or infrastructure … beyond the normal capabilities of the principal emergency services (An Garda Síochána, the Ambulance Service and the Fire Service) in the area in which the event occurs.’

Pages dedicated to NDFEM can be found on the Department of the Environment, Heritage & Local Government (DEHLG) WebSite … www.environ.ie

From the DEHLG HomePage, follow the link to the National Directorate for Fire & Emergency Management.

Please read … without laughing, crying, screaming out loud in utter frustration, or any combination thereof … about the NDFEM’s Mandate and Structure here … www.environ.ie/en/LocalGovernment/NationalDirectorateforFireandEmergencyManagement

Then … and only if you are brave enough … check out the Bozos, Wasters and Lúdramáns who sit on the NDFEM’s Management Board here … www.environ.ie/en/LocalGovernment/NationalDirectorateforFireandEmergencyManagement/ManagementBoard … and the NDFEM’s Consultative Committee here … www.environ.ie/en/LocalGovernment/NationalDirectorateforFireandEmergencyManagement/ConsultativeCommittee

Prize specimens !   At least we can get rid of politicians at the next elections !!

.

END

Emergency Planning For ALL & Special Needs Populations ?

On 15th August 2008, the United States Federal Emergency Management Agency (FEMA), in association with the U.S. Department of Homeland Security (DHS) Office for Civil Rights & Civil Liberties, published Comprehensive Preparedness Guide #301: ‘Interim Emergency Management Planning Guide for Special Needs Populations’.

What follows are important extracts from CPG #301.  As you slowly read along … consider the chaotic, clapped-out and ramshackle response, at national level, to the Flood Emergency in Ireland

Throughout the history of Emergency Management Planning, considerations for Special Needs Populations have often been inadequate.  From the 1930’s, when disaster response was ad hoc and largely focused on the repair of damaged infrastructure, through to the present day, emergency management culture of ‘readiness’, special needs populations were often given insufficient consideration.  This fact was evident in 2003 during the California wildfires and when Hurricane Katrina devastated the Gulf Coast in 2005.  During these events, some individuals with special needs did not receive appropriate warning, were unable to access shelters, or went without medical intervention.  During the 2006 Nationwide Plan Review, a sample of emergency management plans was reviewed by subject-matter experts on disability and ageing.  The review confirmed that emergency plans from various regions in the United States continue to overlook these populations.  The Nationwide Plan Review Phase 2 Report concluded that “substantial improvement is necessary to integrate people with disabilities into emergency planning and readiness”.

Numerous ‘lessons learned’ reports that followed Hurricane Katrina also pointed out that there is a large segment of the U.S. population who may not be able to successfully plan for, and respond to, an emergency with resources typically accessible to the general population.  The current general population is one that is diverse, ageing, and focused on maintaining independence as long as possible.  The popularity of living situations that provide an ‘as needed’ level of care in the least restrictive manner is fast becoming the norm.  Consideration should therefore be given to people who may be able to function independently under normal situations, but who may need assistance in an emergency situation.

For example, it is estimated that about 13 million individuals aged 50 years or older in the United States will need evacuation assistance, and about half of these individuals will require such assistance from someone outside of their household.  There are well over 1 million people in the United States receiving home healthcare according to 2000 data cited by the National Center for Health Care Statistics.  Populations such as these should be considered when emergency plans are developed to accurately assess the resources needed to adequately respond when a disaster strikes.  The 2000 Census reported that 18% of those surveyed speak a language other than English at home.  This highlights the need to ensure the effectiveness of emergency communications.  Populations described as ‘transportation disadvantaged’ – those who do not have access to a personal vehicle or are precluded from driving – may also require assistance during emergencies.  The 2000 Census reports that in the top ten car-less cities, between 29% and 56% of the households are without a vehicle.  These examples serve to demonstrate community emergency planning should go beyond traditional considerations.

During the Nationwide Plan Review, Emergency Managers consistently requested technical assistance in identifying and incorporating special needs populations into emergency planning.  As described later, defining the term ‘special needs’ is a critical initial step in the planning process.  The Federal Government introduced, within the National Response Framework (NRF), a definition of special needs populations that State, Territorial, Tribal, and Local governments may adopt for use in their Emergency Operation Plan (EOP) development.  It is important to note that though this terminology may appear ambiguous, it is well established in the Emergency Management Vocabulary and when clearly defined, strengthens the planning process.

Although it is recognized that significant emergency planning should be done for incarcerated populations, these groups cannot be integrated into general population planning.  Individuals in correctional settings are institutionalized to protect other members of society; people who are institutionalized in health related settings are there for their own protection and wellbeing.  Emergency management planning for incarcerated populations requires additional consideration such as law enforcement and co-ordination between emergency managers, the Department of Corrections, and prison superintendents to ensure safety of the prisoners and the public.  For these reasons, incarcerated populations are not included in the NRF definition of ‘special needs’, which is the same definition used in this Planning Guide.

 

U.S. Federal Emergency Management Agency (FEMA) CPG #301

Date: 15 August 2008.  PDF File, 301kb.

Interim Emergency Management Planning Guide for Special Needs Populations

Click the link above to read and/or download CPG #301

 

Emergency Management takes into consideration planning for the safety of every person in the community during and following a disaster.  Taking into consideration populations historically considered ‘vulnerable’, ‘at risk’, or ‘special needs’, ultimately improves the overall community’s post-disaster sustainability.

Before drafting Emergency Plans, it is recommended that a state-wide definition for the term ‘special needs’ be developed and used to guide State, Territorial, Tribal, and Local jurisdictions in the planning process.  A consistent use of terminology will result in improved communication and co-ordination of resources across State, Territorial, Tribal, and Local entities.

The NRF Definition for ‘special needs’ provides a function-based approach for planning and seeks to establish a flexible framework that addresses a broad set of common function-based needs, irrespective of specific diagnosis, statuses, or labels (e.g. children, older people, transportation disadvantaged, etc.).  In other words, this function-based definition reflects the capabilities of the individual, not the condition or label.  Governments that choose to align their language to the NRF definition will improve inter-government communication during an incident.

The Definition of Special Needs Populations, as it appears in the U.S. National Response Framework (NRF) is as follows:

Populations whose members may have additional needs before, during, and after an incident in functional areas, including but not limited to:

–   Maintaining Independence ;

–   Communication ;

–   Transportation ;

–   Supervision ;

–   Medical Care.

Individuals in need of additional response assistance may include those who have disabilities; who live in institutionalized settings; who are elderly; who are children; who are from diverse cultures; who have limited English proficiency; or who are non-English speaking; or who are transportation disadvantaged.

[The concept of a function-based approach to defining special needs populations has been developed by June Isaacson Kailes.  See Kailes, J. and Enders, A. in “Moving Beyond ‘Special Needs’: A Function-Based Framework for Emergency Management Planning”.  Journal of Disability Policy Studies, Vol./No. 44/2007.  Pages 230-237.]

At first glance, it may appear that each of the above groups (and a disproportionately large percentage of the population) is automatically classified as having special needs, but this is not the case.  The definition indicates these groups may often include individuals who have special needs and, in the event of an emergency, may need additional assistance or specialized resources.  For example, in a city like New York where less than half of all households own a car, transportation-dependence is not necessarily a ‘special need’.  A special need in this instance is an inability to access the transportation alternatives defined by the Emergency Operation Plan (EOP).  It is important to remember that special needs populations have needs that extend beyond those of the general population.

The definition focuses on the following function-based aspects:

  • Maintaining Independence – Individuals requiring support to be independent in daily activities may lose this support during an emergency or a disaster.  Such support may include consumable medical supplies (baby diapers, formula, bandages, continence supplies, etc.), durable medical equipment (wheelchairs, walkers, scooters, etc.), service animals, and/or attendants or caregivers.  Supplying needed support to these individuals will enable them to maintain their pre-disaster level of independence.
  • Communication – Individuals who have limitations which interfere with the receipt of and response to information will need that information provided in format they can understand and use.  They may not be able to hear verbal announcements, see directional signs, or understand how to get assistance due to hearing, vision, speech, cognitive, or intellectual limitations, and/or limited English proficiency.
  • Transportation – Individuals who cannot drive or who do not have a vehicle may require transportation support for successful evacuation.  This support may include accessible vehicles (e.g., lift-equipped or vehicles suitable for transporting individuals who use oxygen) or information about how and where to access mass transportation during an evacuation.
  • Supervision – Before, during, and after an emergency individuals may lose the support of caregivers, family, or friends or may be unable to cope in a new environment (particularly if they have dementia, Alzheimer’s or psychiatric conditions such as schizophrenia or intense anxiety).  If separated from their caregivers, young children may be unable to identify themselves; and when in danger, they may lack the cognitive ability to assess the situation and react appropriately.
  • Medical Care – Individuals who are not self-sufficient or who do not have adequate support from caregivers, family, or friends may need assistance with: managing unstable, terminal or contagious conditions which require observation and ongoing treatment;  managing intravenous therapy, tube feeding, and vital signs;  receiving dialysis, oxygen, and suction administration;  managing wounds;  and operating power-dependent equipment to sustain life.  These individuals require support of trained medical professionals.

 The above examples illustrate function-based needs that may exist within the community.

 

Important Conclusions for Ireland & Europe Generally:

1.  The innovative approach taken to Special Needs Populations in U.S. FEMA Comprehensive Preparedness Guide #301 is entirely consistent with European concepts of ‘mainstreaming’, ‘accessibility for all’, ‘fire safety, protection and evacuation for all’, etc … and the widespread, standardized and consistent use of the language and terminology in the 2001 World Health Organization (WHO) International Classification of Functioning, Disability & Health (ICF) … an approach which I have long advocated across Europe.

2.  Fragmentation of the Irish Special Needs Population, dissention between different groups within that population or a lack of willingness to work with other groups … the use of far too many ad-hoc labels … and the anarchic abuse of disability-related language and terminology … pose a grave risk to the Safety, Health and Wellbeing of all these groups in Emergencies, whether large or small scale … and create unnecessary, and sometimes insurmountable, barriers to effective communication and the proper co-ordination of emergency response resources.  This problem is deep-rooted and endemic throughout Europe.

3.  French use of the words, e.g. ‘les handicapés’, ‘les invalides’, is both outdated and barbaric.  Similarly, German use of the word ‘die behinderten’ is unacceptable.  A concerted effort, at European level, must be made to modernize and harmonize the use of disability-related terminology in our many different languages.  Large Scale Emergencies in Europe, involving 2, 3 or more E.U. Member States, require … as a priority … effective communication and the proper co-ordination of emergency response resources.

 

 

END