fire service support infrastructure

After Grenfell: Reliable Design, Supply & Construction Essential !

2017-10-10:  After the Grenfell Tower Fire Tragedy in London, on 14 June 2017, the integrity of the English Regulatory and Technical/Building Control Systems is now so compromised that a complete Systems Transformation is immediately required !   Closer to home, here in Ireland … what nobody is daring to say, even our tame media, is that Our Regulatory System is based very closely on the English System.  And Our Technical/Building Control System is purposefully under-resourced … so it is weak and ineffective.

Let there be no confusion … Priory Hall and Longboat Quay, both in Dublin, are just the tip of an enormous iceberg …

Colour photograph showing the Grenfell Tower Fire, in London … early in the morning, after dawn, on Wednesday, 14 June 2017.  Harsh, tragic Reality !  Click to enlarge.

So where do we start again ?

Reality – Reliability – Redundancy – Resilience !

With regard to Reliable Fire Engineering Related Design, Supply and Construction … this is how we must proceed …

  1. Design of the works is exercised by an independent, appropriately qualified and experienced architect/engineer/fire engineer, with design competence relating to the fire protection of buildings ;
  1. Supply of fire safety related construction products/systems to the works is undertaken by reputable organizations with construction competence, particularly in relation to the fire protection of buildings ;
  1. Installation/fitting of fire safety related construction products/systems is exercised by appropriately qualified and experienced personnel, with construction competence relating to the fire protection of buildings ;
  1. Supervision of the works is exercised by appropriately qualified and experienced personnel from the principal construction organization ;
  1. Regular inspections, by appropriately qualified and experienced personnel familiar with the design, and independent of both the design and construction organizations, are carried out to verify that the works are being executed in accordance with the design.

.

.

END

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Sustainable Fire Engineering – 2016 End Of Year Report !

2016-12-28:  Happy New Year to One and All !

SUSTAINABLE FIRE ENGINEERING

‘ The creative, person-centred and ethical Fire Engineering response, in resilient built form and smart systems, to the concept of Sustainable Human and Social Development – the many aspects of which must receive balanced and synchronous consideration.’

.

Organized by FireOx International (Ireland, Italy & Turkey), in joint collaboration with Glasgow Caledonian University’s School of Engineering & Built Environment (Scotland) … and having a widely multi-disciplinary attendance from the U.S.A., Hong Kong SAR (China), Spain, Finland, Scotland, Norway, Germany, England, The Netherlands and Ireland … SFE 2016 DUBLIN was a unique, and very successful, two-day gathering within the International Fire Engineering and Fire Service Communities.

The organizers are very grateful to our Supporters: CIB, FIDIC, iiSBE, and the UNEP’s Sustainable Buildings and Climate Initiative … and our Sponsor: Rockwool International.

SUSTAINABLE FIRE ENGINEERING fulfils a Critical Role in the realization of a Safe, Resilient and Sustainable Built Environment 4 ALL !

SUSTAINABLE FIRE ENGINEERING facilitates Positive Progress in implementing the United Nation’s 2030 Sustainable Development Agenda, which incorporates 17 Sustainable Development Goals and 169 Performance Targets !

SUSTAINABLE FIRE ENGINEERING fast-tracks Proper Compliance with the 7 Basic Performance Requirements – functional, fully integrated and indivisible – in Annex I of European Union Construction Products Regulation 305/2011 !

.

A NECESSARY & LONG OVERDUE TRANSFORMATION !

A Building is a permanent construction, complying with basic performance requirements and capable of being easily adapted … comprising structure, essential electronic, information and communication technologies (EICT’s), and fabric (non-structure) … having a minimum life cycle of 100 years … and providing habitable, functional and flexible interior spaces for people to use.

Building Users have a wide and varied range of abilities and behaviours … some having discernible health conditions and/or physical, mental, cognitive, psychological impairments … while others, e.g. young children, women in the later stages of pregnancy and frail older people, are also particularly vulnerable in user-hostile, inaccessible environments.  Not everyone will self-identify as having an activity limitation because of the high level of social stigma associated with ‘disability’.  Building designers and fire engineers must accept that building users have rights and responsible needs ;  the real individual and group fire safety requirements of vulnerable building users must be given proper consideration by both design disciplines, working collaboratively together.

Real Building Users have a wide and varied range of abilities … and during a Fire Evacuation, they will NOT behave like ‘marbles or liquid in a computer model’ !  People with Disabilities, on their own, account for approximately 20% of populations in developed countries … more in developing and the least developed countries.

NOBODY LEFT BEHIND !

‘Fire Safety for ALL’ in Buildings – Not Just for SOME – A Priority Theme of Sustainable Fire Engineering

Current Revision of International Standard ISO 21542 (2011): ‘Building Construction – Accessibility & Usability of the Built Environment’

.

Following the savage 2008 Mumbai Hive Attack in India, and the more recent 2015 and 2016 Attacks in Europe, i.e. Paris, Brussels, Istanbul and Berlin … it is entirely wrong to assume that the main and/or only targets will be specific high-risk buildings types, i.e. Tall/High-Rise, Iconic, Innovative and Critical Function Buildings (refer to 2005 & 2008 NIST WTC 9-11 Recommendations).  All buildings and adjoining/adjacent public spaces must be carefully assessed for the risk of direct or collateral involvement in an Extreme Man-Made Event.

It is a fundamental principle of reliable and resilient structural engineering that horizontal and vertical structural members/elements of construction are robustly connected together.  All buildings must, therefore, be capable of resisting Disproportionate Damage.  The restriction of this requirement, within some jurisdictions, to buildings of more than five storeys in height is purely arbitrary, cannot be substantiated technically … and ethically, must be disregarded.

Fire-Induced Progressive Damage is distinguished from Disproportionate Damage – a related but different structural concept – by the mode of damage initiation, not the final condition of building failure.  This phenomenon is poorly understood.  But, unless it is impeded, or resisted, by building design … Fire-Induced Progressive Damage will result in Disproportionate Damage … and may lead to a Collapse Level Event (CLE), which is entirely unacceptable to the general population of any community or society.  All buildings must, therefore, be capable of resisting Fire-Induced Progressive Damage.

All buildings must also be carefully assessed for the risk of involvement in a Severe Natural Event, e.g. earthquakes, floods, landslides, typhoons and tsunamis.

In all of the above Risk Assessments … the minimum Return Period (also known as Recurrence Interval or Repeat Interval) must never be less than 100 years.

Reacting to surging energy, environmental and planetary capacity pressures … with accelerating climate change … Sustainable Buildings are now presenting society with an innovative and exciting re-interpretation of how a building is designed, constructed and functions … an approach which is leaving the International Fire Engineering and Fire Service Communities far behind in its wake, struggling to keep up.

Colour ‘infographic’ showing the design features of 1 Bligh Street, Sydney CBD, Australia … ‘tall’/skyscraper commercial office building, completed in 2011 … designed by Ingenhoven Architects (Germany) and Architectus (Australia).  Can Fire Engineers understand this new design approach … and then collaborate, actively and creatively, within the Project Design Team ?

Black and white plan drawing of 1 Bligh Street (Level 26), Sydney CBD, Australia … a ‘sustainable’ office building … BUT … Effective ‘Fire Safety for All’ in this building ?  Has Firefighter Safety been considered ??  Property Protection ???  Business Continuity ????  The very harmful Environmental Impacts of Fire ?????

Passive and Active Fire Protection Measures, together with Building Management Systems (whether human and/or intelligent), are never 100% reliable.  Society must depend, therefore, on firefighters to fill this reliability ‘gap’ … and to enter buildings on fire in order to search for remaining or trapped building users.  This is in addition to their regular firefighting function.  Therefore, there is a strong ethical obligation on building designers, including fire engineers, to properly consider Firefighter Safety … should a fire incident occur at any time during the life cycle of a building.

Structural Serviceability, Fire Resistance Performance and ‘Fire Safety for All’ in a building must, therefore, be related directly to the local Fire Service Support Infrastructure … particularly in developing and the least developed countries.  AND … Fire Codes and Standards must always be adapted to a local context !

Colour photograph showing knotted sheets hanging from high-level windows which were used for ‘escape’ by guests … clearly indicating a catastrophic failure of fire protection measures and management within the building. Fire and smoke spread quickly throughout the multi-storey hotel, resulting in 12 dead, and over 100 injured (approximately 1/3 critically).

Colour photograph showing a guest rescue by ladder.  Notice the condition of the ladder and firefighter protection.  Fire safety in a building must be related directly to local Fire Service Support Infrastructure … particularly in developing and the least developed countries.

The fire safety objectives of current Fire Codes and Standards are limited, usually flawed … and will rarely satisfy the real needs of clients/client organizations, or properly protect society.  Fire code compliance, in isolation from other aspects of building performance, will involve a consideration of only a fraction of the issues discussed above.  There is once again, therefore, a strong ethical obligation on building designers, including fire engineers, to clearly differentiate between the limited fire safety objectives in Fire Codes and Standards … and Project-Specific Fire Engineering Design Objectives … and to explain these differences to a Client/Client Organization.  Facility Managers must also explain these differences directly to an Organization’s Senior Management … and directly inform the Organization’s Board of Directors … as appropriate.SFE Mission:  To ensure that there is an effective level of Fire Safety for ALL – not just for SOME – in the Built Environment … to dramatically reduce all direct and indirect fire losses in the Human Environment … and to protect the Natural Environment.

4 Key SFE Concepts:  Reality – Reliability – Redundancy – Resilience !

SFE Design Solutions:  Are …

  • Adapted to Local Context & Heritage ;
  • Reliability-Based ;
  • Person-Centred ;   and
  • Resilient.

SFE SUBSIDIARY OBJECTIVES

  1. To transform Conventional Fire Engineering, as practiced today, into an ethical and fully professional Sustainable Design Discipline which is fit for purpose in the 21st Century … meaning … that fire engineers can participate actively and collaboratively in the sustainable design process, and can respond creatively with sustainable fire engineering design solutions which result in Effective Fire Safety for All in a Safe, Resilient and Sustainable Built Environment.
  2. To bring together today’s disparate sectors within the International Fire Engineering (and Science) Community … to encourage better communication between each, and trans-disciplinary collaboration between all.
  3. To initiate discussion and foster mutual understanding between the International Sustainable Development, Climate Change and Urban Resilience Communities … and the International Fire Engineering and Fire Service Communities.

SFE DELIVERABLES

1.  2016 Dublin Code of Ethics: Design, Engineering, Construction & Operation of a Safe, Resilient & Sustainable Built Environment for All.  Download from: http://www.sustainable-firengineering.ie/sfe2016dublin/wp-content/uploads/2016/09/2016_Dublin-Code-of-Ethics.pdf

The realization of a Safe, Inclusive, Resilient & Sustainable Built Environment demands a concerted, collaborative, very creative and widely trans-disciplinary effort at national, local, regional and international levels across the whole planet – Our Common Home.  The informed operation of appropriate legislation, administrative procedures, performance monitoring and targeting, and incentives/disincentives, at all of these levels, will facilitate initial progress towards this objective … but not the quantity, quality or speed of progress necessary.  Our time is running out !

This Code of Ethics applies … for those who subscribe to its values … to policy and decision makers, and the many different individuals and organizations directly and indirectly involved in the design, engineering, construction, and operation (management and maintenance) of a Safe, Resilient & Sustainable Built Environment for All.

The Purpose of this Code of Ethics is to guide the work of competent individuals and organizations in a context where incomplete or inadequate legislation, administrative procedures and incentives/disincentives exist … but, more importantly, where they do not exist at all … and, amid much confusion and obfuscation of the terms, to ensure that implementation is authentically ‘sustainable’, and reliably ‘safe’ and ‘resilient’ for every person in the receiving community, society or culture … before it is too late !

2.  Sustainable Fire Engineering Network … Join the LinkedIn SFE Group at https://www.linkedin.com/groups/8390667.  Interested Individuals and Organizations are all very welcome.

And … Like the Facebook SFE Page at https://www.facebook.com/sfe2016/

3.  New CIB W14: ‘Fire Safety’ Research Working Group VI Reflection Document: ‘Sustainable Fire Engineering Design, Construction & Operation’, which will establish a framework for the future development of Sustainable Fire Engineering.

Preparation of this Document will soon begin, and the following issues will be explored:

  • Conceptual Framework for Sustainable Fire Engineering (SFE), with a necessary accompanying Generic SFE Terminology ;
  • Strategy for Future SFE Development ;
  • Implementation of 2005 & 2008 NIST WTC 9-11 Recommendations ;
  • Fresh, New SFE Research Agenda ;
  • Resilient Implementation of SFE Research Agenda.

4.  SFE Websitehttp://www.sfe-fire.eu

5.  SFE Twitter Accounts … @sfe2016dublin … and … @firesafety4all

.

.

END

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Firefighter Safety & Solar Photovoltaic Panels On Buildings ??

2016-09-14:  Only now are we really catching up with the extremely serious matter of Fire Safety in Sustainable Buildings … serious for building occupants … and firefighters !

‘ In order to achieve sustainable development, environmental protection and energy efficiency/conservation shall constitute integral parts of the development process, and shall not be considered in isolation.’

2016 Dublin Code of Ethics: Design, Engineering, Construction & Operation of a Safe, Resilient & Sustainable Built Environment for All   ( www.sfe-fire.eu )

The Performance Target for New Construction must be Positive Energy Buildings.

So … we will see more and more Solar Photovoltaic Panels installed on more and more buildings … in every country.  Certainly not less !   And, let’s face it, many will not be properly approved, i.e. shown to be ‘fit for their intended use’ …

Colour photograph showing a house fire caused by Solar Photovoltaic Roof Panels.

Colour photograph showing a house fire caused by Solar Photovoltaic Roof Panels.

At the beginning of this decade, a Fire Research Project was carried out by the Underwriters Laboratories Firefighter Research Institute in the USA … and it addressed the issue of firefighter vulnerability to electrical hazards, and serious injury, when fighting a fire involving Solar Photovoltaic (PV) Modules and Support Systems installed on buildings.

Colour photograph showing two firefighters on a roof, one with cutting equipment. Solar Photovoltaic Roof Panels restrict firefighter access to building interior roof spaces.

Colour photograph showing two firefighters on a roof, one with cutting equipment. Solar Photovoltaic Roof Panels restrict firefighter access to building interior roof spaces.

The Total Global Solar Energy Capacity averaged 40 % annual growth from 2000 to 2010 (source: International Energy Agency).  In the USA, Grid-Connected Solar Photovoltaic Capacity grew 50 % per year for much of that time (source: US Federal Energy Regulatory Commission).  These trends increase the potential of a Fire Service Response to a building having a Photovoltaic Installation, irrespective of the PV being involved with the initiation of the fire event.  As a result, conventional firefighter tactics for suppression, ventilation and overhaul have been complicated, leaving firefighters vulnerable to potentially unrecognized exposure.  Though the electrical and fire hazards associated with electrical generation and distribution systems are well known, PV Systems present unique safety concerns.  A limited body of knowledge and insufficient data exist to understand these risks … to the extent that Fire Services have been unable to develop safety solutions and respond in a safe manner.

This Fire Research Project developed the empirical data needed to quantify the hazards associated with PV Installations … and provided the foundation to modify current or develop new firefighting practices to reduce firefighter deaths and injury.

Colour photograph showing a large array of Solar Photovoltaic Panels on a roof. Extra loading on roof structures must be considered, as well as possible interference with roof fire evacuation routes for able-bodied occupants.

Colour photograph showing a large array of Solar Photovoltaic Panels on a roof. Extra loading on roof structures must be considered, as well as possible interference with roof fire evacuation routes for able-bodied occupants.

The Tactical Considerations addressed during the Project include:

  • Shock hazard due to the presence of water and PV power during fire suppression activities ;
  • Shock hazard due to the direct contact with energized components during firefighting operations ;
  • Emergency disconnect and disruption techniques ;
  • Severing of conductors ;
  • Assessment of PV power during low ambient light, artificial light and light from a fire ;
  • Assessment of potential shock hazard from damaged PV Modules and Systems.

.

Office of California’s State Fire Marshal – November 2010

Fire Operations for Photovoltaic Emergencies (CAL FIRE – 2010)  (PDF File, 1.99MB)

.

UL Report (2011):  The Following Summarizes the Findings of This Fire Research Project:

  1. The electric shock hazard due to the application of water is dependent on voltage, water conductivity, distance and spray pattern.  A slight adjustment from a solid fire hose stream towards a fog pattern (10 degree cone angle) reduced measured current below perception level.  Salt water should not be used on live electrical equipment.  A distance of 6 m has been determined to reduce potential shock hazard from a 1000 VDC source to a level below 2 mA, considered as safe.  It should be noted that pooled water or foam may become energized due to damage in the PV System.
  1. Outdoor weather exposure-rated electrical enclosures are not resistant to water penetration by fire hose streams.  A typical enclosure will collect water and present an electrical hazard.
  1. Firefighters’ gloves and boots afford limited protection against electrical shock provided the insulating surface is intact and dry.  They should not be considered equivalent to Electrical Personal Protective Equipment (PPE).
  1. Turning off an array is not as simple as opening a disconnect switch.  Depending on the individual system, there may be multiple circuits wired together to a common point such as a combiner box.  All circuits supplying power to this point must be interrupted to partially de-energize the system.  As long as the array is illuminated, parts of the system will remain energized.  Unlike a typical electrical or gas utility … on a PV Array, there is no single point of disconnect.
  1. Tarps offer varying degrees of effectiveness to interrupt the generation of power from a PV Array, independent of cost.  Heavy, densely woven fabric and dark plastic films reduce the power from PV to nearly zero.  As a general guide, if light can be seen through a tarp, it should not be used.  Caution should be exercised during the deployment of tarps on damaged equipment, as a wet tarp may become energized and conduct hazardous current if it contacts live equipment.  Also, firefighting foam should not be relied upon to block light.
  1. When illuminated by artificial light sources, such as Fire Department light trucks or an exposure fire, PV Systems are capable of producing electrical power sufficient to cause a lock-on hazard.
  1. Severely damaged PV Arrays are capable of producing hazardous conditions ranging from perception to electrocution.  Damage to the array may result in the creation of new and unexpected circuit paths.  These paths may include both array components (module frame, mounting racks, conduits, etc) and building components (metal roofs, flashings and gutters).  Care must be exercised during all operations, both interior and exterior.  Contacting a local professional PV Installation Company should be considered to mitigate potential hazards.
  1. Damage to modules from tools may result in both electrical and fire hazards.  The hazard may occur at the point of damage or at other locations depending on the electrical path. Metal roofs present unique challenges in that the surface is conductive unlike other types such as shingle, ballasted or single ply.
  1. Severing of conductors in both metal and plastic conduit results in electrical and fire hazards.  Care must be exercised during ventilation and overhaul.
  1. Responding personnel must stay away from the roofline in the event of modules or sections of an array sliding off the roof.
  1. Fires under an array but above the roof may breach roofing materials and decking … allowing fire to propagate into the attic space of the building.

.

.

END

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Fire Evacuation Use of Lifts/Elevators, Escalators & Travellators !!

2016-05-16:  Media coverage of the Brussels Hive Attack, on 22 March 2016 … and, more recently, my own experience travelling in the Rome Metro, where the lines have been constructed deep in the ground to avoid the city’s vast and rich archaeological heritage … made me seriously wonder about how vulnerable users of the built environment can possibly cope in emergencies.

Escalators (moving stairs) and Travellators (horizontal moving walkways) are very common in public buildings.  They greatly facilitate convenient and comfortable circulation for everybody … especially in large, extensive and complex building types.  Escalators are absolutely essential in metro environments, both for access and egress.

Escalators which are static … which don’t move, for one reason or another … are dangerous.  The rise of steps in the main part of the escalator is usually very high, too high for any type of public building … and at the top and bottom of the escalator, the step rise varies dramatically … which is a recipe for trips and falls, particularly in any sort of emergency.

AND … we know that during a fire emergency in a building, many people will attempt to evacuate that building by re-tracing their route of entry … whatever the hazard and wherever it is located.

Too many Standards and Guideline Documents take the easy option … and recommend that lifts/elevators, escalators and travellators should all be shut down during emergencies, and their use prevented.  For the moment, I am thinking of just two examples:

  • European Standard EN 115: Safety of Escalators and Moving Walks – Part 1: Construction and Installation.  2008-05-29, including Amendment 1 2010-02-23.
  • Guidelines for the Safe Operation of Escalators and Moving Walks, published by the Safety Assessment Federation (GB), in consultation with the British Health & Safety Executive.  Issue 1, 2011-05-24.

These Recommendations … this Guidance, or Advice, or Whatever … show absolutely no consideration for the Safe Evacuation of People With Activity Limitations (2001 WHO ICF) in an Emergency.

These Recommendations … this Guidance, or Advice, or Whatever … are WRONG !

Subject to some simple requirements, e.g. a separate fire-protected electrical supply in each case, and appropriate management and fire service control, etc … Lifts/Elevators, Escalators and Travellators should all be available for use by people evacuating a building/facility during an emergency … and for use by firefighters accessing that same building/facility.

Building Designers, Fire Services & Standards Organizations … please take careful note !!

.

.

END

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

U.S. Implementation of NIST’s 9-11 WTC Recommendations ?!?!

2016-05-05:  A Mickey Mouse Effort would be a polite way of describing the long drawn-out and tortuous process of implementing NIST’s Recommendations in the United States.  A better description might be … FUBAR !

15 Years After the 2001 WTC 9-11 Attacks in New York City … absolutely nothing has been done concerning the implementation of a significant number of Recommendations … other Recommendations have been only partially implemented, with many being limited to application in buildings over 128m high (420 feet in ye olde silly imperial units of measure), or else buildings over 22.86m high (75 feet) which have an occupant load exceeding 5,000 people or are essential facilities, e.g. hospitals.  And believe it or not, some implementing measures are still being challenged and they may yet be reversed in the years ahead.  Forget about discussing the already narrow Fire Safety Objectives in building codes/regulations, or Protecting Society, etc., etc.  In essence, it has all come down to that ‘durty’ four letter word: COST !

But read this 2011 Status Report for yourselves.  I have kept in touch with the current situation over there.

NIST’s WTC 9-11 Recommendations Status Report (2011-08-08) – PDF File, 330 Kb

Why should this matter ?

In 2005 & 2008, the U.S. National Institute of Standards & Technology issued a series of very important [ critical ] Recommendations on badly needed revisions to the Design – Construction – Management – Firefighting Procedures for Very High/Tall Buildings, High-Risk Buildings, Iconic Buildings, and Innovatively Designed Buildings.  Many, if not all, of these Recommendations were, and remain, just as valid and just as necessary in the case of other building types … whatever their height.

A lot of effort was expended here, a few years ago, on a detailed examination of the NIST Recommendations.  In one respect, the Recommendations have become dated and obsolete.  The recent 2016 Brussels and 2015 Paris Hive Attacks have altered how we must categorize and deal with buildings of ‘high-risk’.  From the start, however, the disability-related Recommendations only concerned mobility impaired building occupants … a serious flaw.

NIST does not have the legal authority to implement its own Recommendations within the United States.  However, implementation by the Model Code (e.g. IBC & NFPA) Organizations has been brutally slow and entirely inadequate.

And … it is very noticeable how so many other countries around the world are continuing  to completely ignore NIST’s Recommendations.  9-11 never happened !

.

.

END

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Wind Turbine Fires – Facing Up To The ‘Environmental Impact’ !?!

2016-04-19:  A Priority Theme of  SFE 2016 DUBLIN, next September, is the ‘Adverse Environmental Impact’ caused by Preventable Fires in the Built Environment.  Last year’s horrendous devastation of large tracts of land, air and ground waters in the Tianjin port region of North-Eastern China is one very obvious example.

BUT, consider also … Wind Turbine Fires.  As we move closer and closer towards a planetary environmental precipice … there IS enormous pressure to harvest more and more energy from renewable, non-carbon resources.  Windmills, of old, used wind energy to perform an important function in a local context.  Everybody could see what was happening inside.  Local people reaped the benefits.  Modern wind turbines, on the other hand … ?

The First Major Issue concerning Wind Turbines, which received only half-hearted attention at best, was their …

Environmental Impact:  Any effect caused by a given activity on the environment, including human health, safety and welfare, flora, fauna, soil, air, water, and especially representative samples of natural ecosystems, climate, landscape and historical monuments or other physical structures, or the interactions among these factors; it also includes effects on accessibility, cultural heritage or socio-economic conditions resulting from alterations to those factors.

But, at least, ‘it’ was mentioned in conversations !

.

Click image to enlarge.

The next major issue, the Fire Issue, is a different matter entirely.  This problem does NOT exist … NEVER happens … NOBODY KNOWS NOTHING !   And not just in Ireland or Europe … the ‘real’ fire statistics are either ignored, massaged or concealed.

Wind turbines differ from other forms of traditional power generation because of the inherent risk of total fire loss of the nacelle.  The main features of this risk include:

  • high concentration of value within the nacelle ;
  • high concentration of potential ignition sources within the nacelle, and increased risk of lightning strikes ;
  • unmanned operation ;
  • no possibility of fighting a fire in the nacelle by local fire service personnel, because they are too high up and/or there is no access for fire service vehicles ;
  • remote, sometimes very difficult to reach geographical locations of wind turbines, particularly in the case of offshore installations.

[ Nacelle:  A cover, or housing, for all of the generating components in a wind turbine, including the generator, gearbox, drive train, and brake assembly.]

The cost of wind turbines and their components, as well as restoration and repair costs after a fire, increase in proportion to installed generating capacity.  In addition, losses caused by service interruption also increase in a similar proportion.

According to the loss experience of Insurers, fires in wind turbines can cause significant damage to property and have very high post-fire costs.

Fire Loss in Wind Turbines Can Occur …

  • in the nacelle ;
  • in the tower ;
  • in the electrical sub-station of the wind turbine or wind farm.

Due to the high concentration of technical equipment and combustible material in the nacelle, fire can develop and spread rapidly.  There is also the danger that the upper tower segment will be damaged.  In the case of a total loss of the nacelle, restoration costs may well reach the original value of the whole turbine.

These ‘Preventable’ Fire Losses Are NOT Sustainable !

.

PDF File, 601Kb – Click ‘CFPA-E Guideline’ link below to download.

Which is why, in September 2012, the European Fire Protection Associations decided to publish a common guideline in order to ensure similar interpretations in the different European countries … and to give examples of acceptable solutions, concepts and models.  The Confederation of Fire Protection Associations in Europe (CFPA-E) aims to facilitate and support fire protection work.

The European marketplace is constantly imposing new demands for quality and safety.  According to CFPA-E, fire protection forms an integral part of a modern business strategy for survival and competitiveness.  We thoroughly agree !

This CFPA-E Guideline (No.22 – September 2012) on Wind Turbine Fire Protection in Europe – produced by VdS Schadenverhütung and drafted by Hardy Rusch – is primarily intended for those people responsible for fire safety in companies and organizations.  It is also addressed to fire services, consultants, safety companies, etc … so that, in the course of their work, they may be able to assist companies and organizations in increasing levels of fire safety.

.

.

END

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

LEED, PassivHaus & BREEAM Housing ~ Atrocious Fire Safety !!

2016-04-11:  It Happened One Night !

And Maybe … if it hadn’t been that particular night, amidst all the festivities of New Year’s Eve 2015, we would never have heard about the Address Hotel Fire, in Dubayy (UAE).  A long search on the Internet afterwards led to the detailed, post fire analysis report on the 2014 Lacrosse Docklands Fire, in Melbourne (Australia) … followed by some more searching, and a very large can of worms opened up … similar nasty façade (external fabric) fires in many, many countries … involving large chunks of flaming debris falling from terrific heights, carried by the wind to a significant distance away from the building of fire origin.

Click to enlarge.

Click to enlarge.

Some people have tried to suggest that the only reason for these fires is inadequate building codes/regulations.  No … the reason for these fires is much more than that … it’s the ‘SYSTEM’ !   In other words, how the International Construction Sector is organized and goes about its ordinary, everyday activities and tasks.  We must also talk about poor quality design and construction … and a lack of stringent, independent enforcement of effective building codes/regulations and standards.  I have written this down many times before … Self-Regulation is NO Regulation !!

It is clearly and amply evident that Conventional Fire Engineering … as currently practiced, internationally … is no longer ‘fit for purpose’.  For discussion at SFE 2016 DUBLIN.  Check out the Fire Conference Website: www.sfe-fire.eu … and on Twitter: @sfe2016dublin

And First Here With The Latest Conference News:

  • A Late Abstract Submission to the Dublin Fire Conference next September 2016 will deal with the topic of Façade Fires in Tall & Not-So-Tall Buildings ;   and
  • SFE 2016 DUBLIN will, from today, be working in co-operation with the biggest fire exhibition in China – CFE 2016 – 6th International Fire Safety Exhibition in Guangzhou, People’s Republic of China (PRC).

.

IN IRELAND … 2015 TERRACED HOUSING FIRE …

The general public was shocked and stunned, to put it mildly, by a very rapid and extensive 2015 Terraced Housing Fire on the outskirts of the Dublin Region …

Click to enlarge.

Click to enlarge.

[ See my Blog, dated 2011-04-06 … about a different, but related, 2011 Terraced Housing Fire in Terenure, a suburb of Dublin City.]

Click to enlarge.

Click to enlarge.

[ Fast forward from 2011 … overtaking Priory Hall (see my series of Blogs) … to Longboat Quay, a large residential development on the south bank of the River Liffey, which flows through the middle of Dublin.  A recent visual/surface inspection of one of the units there revealed not just a poor quality of construction … but a lack of care and attention, with a mixture of incompetence and ignorance thrown in for good measure.]

Click to enlarge.

Click to enlarge.

The 2015 Terraced Housing Fire, shown above, should not have been a surprise to the ‘System’ in Ireland.  Research carried out in the U.S.A., Belgium and The Netherlands since 2012, and a serious PassivHaus Apartment Fire in Köln, Germany, on the night of 5 February 2013  … have all shown that the modern home (highly insulated, airtight, packed with electronic equipment and wiring, and fast-burning synthetic furnishings, etc.) is the ‘perfect storm’ of fire conditions and outcomes.  More open residential design + increased fuel loads + new construction systems and materials = faster development of fires, much reduced times to flashover, far less time for occupant evacuation, particularly people with activity limitations … and shorter building collapse times.

The time to flashover in modern high-performance housing, i.e. Sustainable/Green/PassivHaus/Eco/LEED/Bio/+Energy/Low Carbon/BREEAM/Zero Carbon/SMART … can be 7 times faster than in conventional/legacy housing … or less than 5 minutes, compared with just over 29 minutes !

All of this research can be found on the Links & Docs Page of the SFE 2016 DUBLIN Website.

Let us be crystal clear … there is nothing Sustainable/Green/PassivHaus/Eco/LEED/Bio/+Energy/Low Carbon/BREEAM/Zero Carbon/SMART about the post-fire scenes of destruction shown above.  And only for the physical separation between terraces, which can be clearly seen in the last photograph … the fire would have kept spreading.

.

URGENT FIRE SAFETY RECOMMENDATIONS …

Without a balanced, proper approach to the issue of Fire Safety in this type of modern, high-performance housing … occupant safety is seriously threatened.  And if, in the event of a fire incident, the occupants are asleep … or people with activity limitations are living in the house … that threat will be extremely grave indeed.

Reality – Reliability – Redundancy – Resilience !

So … what needs to change ?   In Ireland, our immediate problem is Timber-Framed Housing (as shown above) … and the following is an outline of what must change … NOW !

  1. Party Walls, i.e. the walls separating one house from another, must be constructed of solid masonry, with a uniform and uncompromised thickness of at least 200mm … plastered on both sides, not dry-lined, for adequate smoke resistance … and be continued above the roof covering for at least 300mm.
  2. An effective Fire Detection System must be installed.  The conventional ‘package’ of one smoke detector per floor in the hallway and staircase of a standard 2 storey semi-detached house is nowhere near being adequate.
  3. An effective Residential / Domestic Fire Suppression System must be installed, e.g. low pressure water mist.  See later post, dated 2016-06-13, for a costed notional installation.
  4. If there is a Controlled Ventilation System, either mechanical or natural, in the house (for the purposes of air quality, heat exchange and energy conservation), it must be linked to the fire detection system.  In the event of a fire incident, the Ventilation System must immediately cease operation, and remain ‘fully open’.  This is in order to mitigate the build-up of high positive pressure, within a confined airtight space, caused by a developing fire … and to provide an exhaust route for smoke and toxic gases … during the short period of time prior to activation of the fire suppression system.
  5. Intermediate Timber Floors and Evacuation Routes, including fire resisting doorsets, must be reliably protected from fire and smoke.  The minimum period of fire and smoke resistance must be linked to local fire service support infrastructure.  In other words, the local fire services must be allowed sufficient time to arrive at the scene of a fire in strength … to search for any occupants still remaining in the fire building … and to bring the fire under control.
  6. Uppermost Ceilings under a trussed timber roof structure, including any trap doorsets into the roof space, must be similarly and reliably protected from fire and smoke.  Once fire enters a roof space, the light trussed timber structure will collapse within a few minutes.
  7. Front and Back Entrance/Egress Doors must be outward opening.  In the 2013 German PassivHaus Apartment Fire, the occupant found it extremely difficult to open inward opening doors and windows because of the high positive pressure caused by the developing fire.  This unusual phenomenon was confirmed in the 2015 Finnish Apartment Fire Tests, when much higher positive pressures were observed.
  8. Internal Linings of External Walls must comprise 2 layers of plasterboard, with all joints staggered … steel fixed, at not more than 150mm centres.  Once fire breaches the internal lining of an external wall, the whole building will become involved in the fire.  Horizontal and vertical fire sealing behind these linings, even if properly installed (!), are too little and too late.
  9. Frontline Firefighters must be supported by specialist structural engineering and hazard appraisal units … and light/portable/reliable Thermal Imaging Cameras must be recognized as a standard tool of firefighting.

.

SUSTAINABLE HOUSING & RESIDENTIAL BUILDINGS …

These building types are more popularly known as Green, PassivHaus / Passive House, LEED, Eco, Bio, BREEAM, +Energy, Zero / Low / Nearly Zero Carbon, or SMART, etc., etc, etc.   In ALL of these cases, however, an Effective Residential Fire Suppression System MUST BE INSTALLED, e.g. low pressure water mist !

In everyday practice … Authorities Having Jurisdiction (AHJ’s), and the Organizations and Individuals responsible for the far-too-rapid construction of these innovative building types are either completely and blissfully ignorant, or callously and negligently in denial, about the seriously negative impacts on Occupant & Firefighter Fire Safety and Building Fire Protection.

BUT … slowly … more and more reliable evidence is being gathered !   Please visit the Links & Docs Page on: www.sfe-fire.eu … and also view this Presentation on some very interesting 2015 Apartment Fire Tests in Finland: www.youtube.com/watch?v=0Ss_ONolzLY

.

ENERGY CONSERVATION & EFFICIENCY UPGRADING OF EXISTING BUILDINGS …

In refurbishment projects where insulation is fixed to the internal surfaces of external walls … similar fire safety problems exist, and they must be solved by reviewing the full checklist above.  Refer again to the PassivHaus Apartment Fire in Köln, Germany, on the night of 5 February 2013 … and to the 2015 Apartment Fire Tests in Finland

.

.

END

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

SFE 2016 DUBLIN – A Benchmark Fire Engineering Event !

2015-11-06 !   We are very pleased to announce that the Fire Safe Europe Alliancewww.firesafeeurope.eu … has become actively involved, together with Glasgow Caledonian University and FireOx International, in co-hosting SFE 2016 DUBLIN.  To facilitate the Network’s full engagement and provide sufficient time for promotion, etc … it was jointly agreed that the new dates for this Event shall be from 28-30 September 2016.

We have every confidence that SFE 2016 DUBLIN will now be a much better event … having a wider range of stakeholder participation.

.

2015-06-29 …

Sustainable Fire Engineering – Effective Fire Safety for All in Sustainable Buildings !
28-30 September 2016      Dublin, Ireland
————
www.sustainable-firengineering.ie  or  www.sfe-fire.eu
———
Approved Regional Sustainable Built Environment Conference in the 2016-17 Series
——
The Gresham Hotel, O’Connell Street, Dublin, Ireland

Céad Míle Fáilte (Hundred Thousand Welcomes) to Dublin, in Ireland … and to the First International Conference devoted to this complex subject !

The 21st Century has had a cruel and savage birth: extreme man-made events, hybrid disasters, severe natural events, complex humanitarian emergencies, with accelerating climate change and variability.  The old certainties are crumbling before our eyes …

The resolute Answer to these threats and the rapidly changing social and environmental needs of our world is Sustainable Fire Engineering !

•  SFE fulfils a critical role in the realization of a Safe, Resilient & Sustainable Built Environment for All ;
•  SFE facilitates positive progress towards the United Nation’s 17 Sustainable Development Goals & 169 Performance Targets, which were adopted in September 2015 ;
•  SFE fast-tracks proper compliance with the Basic Requirements for Construction Works in the European Union’s Construction Products Regulation 305/2011 (Annex I), specifically the interlinked Requirements 7, 2, 1, 3 & 4.

Please join us in an informal, multidisciplinary and pre-normative forum … as we examine Sustainable Fire Engineering more deeply.Event Logo for SFE 2016 DUBLIN

INTRODUCTION to SFE 2016 DUBLIN

Fire Losses – both direct and indirect – amount to a very significant percentage of GDP in all economies, whether they are rich or poor … and result in enormous environmental damage and social disruption.  Fire Engineering, including Fire Prevention and Protection in Buildings, is a major multi-billion Euro/Dollar component of the Construction Industrial Sector – worldwide.

Unfortunately … a fundamental conflict exists between Sustainable Building Design Strategies and the fire safety responses adopted in today’s Conventional Fire Engineering.  To take a simple example: for cooling, heating or ventilation purposes in a Sustainable Building, it is necessary to take advantage of natural unobstructed patterns of air movement in that building.  On the other hand, fire engineers in private practice and control personnel in Authorities Having Jurisdiction (AHJ’s) will demand that building spaces be tightly compartmented in order to limit the spread of fire and smoke … dramatically interfering with those natural patterns of air movement.

Unusual fire behaviour and a range of difficult fire safety issues (critical, in the case of firefighters) also arise from the Innovative Design Features (for example, ‘green’ roofs, elaborate intelligent façades) and Building Products / Systems (for example, photovoltaic panels) being installed in Sustainable Buildings.

A wide chasm separates the language and understanding of these two very different design disciplines.  As a result, the performance of Sustainable Buildings can be seriously compromised.  If, on the other hand, adequate independent technical control is absent on site … it is fire safety which is weakened.

And because, in most countries, the emphasis is placed on pre-construction design intent rather than the ‘real’ performance of the completed/occupied building … these problems are ignored and remain hidden … until a serious fire breaks out !

SUSTAINABLE FIRE ENGINEERING’s AIM

The Aim of Sustainable Fire Engineering is to dramatically reduce all direct and indirect fire losses in the Human Environment (including social, built, economic, environmental, virtual, and institutional) … and to protect the Natural Environment.

Towards Zero Preventable Fires in the Built Environment !

In essence … Sustainable Fire Engineering heavily front-loads Fire Prevention and Fire Protection Measures … above and beyond the minimal and very limited fire safety objectives mandated by current legislation.

SFE’s Key Concepts are … RealityReliabilityRedundancyResilience !

SFE Design Solutions are …

  • Adapted to local geography, climate change and variability, social need, economy, and culture ;
  • Reliability-based ;
  • Person-centred ;
  • Resilient.

SFE 2016 DUBLIN OBJECTIVES

1.  To initiate discussion and foster mutual understanding between the International Sustainable Development / Climate Change / Urban Resilience Communities and the International Fire Science & Engineering Community.
2.  To bring together today’s disparate Sectors within the International Fire Science and Engineering Community … to encourage better communication between each and trans-disciplinary collaboration between all.
3.  To transform Conventional Fire Engineering into an ethical and fully professional Sustainable Design Discipline which is fit for purpose in the 21st Century … meaning … that fire engineers can participate actively in a sustainable design process, and can respond creatively with sustainable fire engineering design solutions which result in Effective Fire Safety for All in Sustainable Buildings.
4.  To launch a CIB W14 Research Working Group VI Reflection Document: ‘Sustainable Fire Engineering Design & Construction’ … which will establish a framework for discussion on the future development of Sustainable Fire Engineering.

SFE 2016 DUBLIN WEBSITE

Today !   Visit the SFE 2016 DUBLIN Website at … www.sustainable-firengineering.ie  or  www.sfe-fire.eu

Download the Information on the Links Page … Review the wide range of Topics which will be examined and discussed at SFE 2016 DUBLIN … Submit an Abstract for a Paper … and Give serious consideration to becoming an Industry Exhibitor, or an Enlightened, Far-sighted Sponsor !!

.

.

END

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Global Event: ‘Fire Safety for All’ in Buildings – Reboot & Reload !

2014-12-09:  FireOx International, the Fire Engineering Division of Sustainable Design International Ltd., is very pleased and proud to present the following Global CSR (Corporate Social Responsibility) Event

Fire Safety for All !9 & 10 April 2015 – Dublin Castle, Ireland

‘Fire Safety for All’ in Buildings – Reboot & Reload !
[ www.fire-safety-for-all.eu ]

Co-Sponsored by CIB & RI-ICTA
Kindly supported by Fáilte Ireland

This will not be a polite gathering intended just for an Irish audience, or even for Europeans … this is a Global Event – a catalyst for Substantive Social Transformation everywhere !

Within the professional discipline of Fire Engineering … either a building is Fire Safe or it is not ;  the design philosophy of the fire engineer is irrelevant.  Similarly, now, we must begin to think and act in the simple terms of a building either being Accessible for All, or not.  And if the building is accessible for all, does it tick all of the right accessibility boxes well, i.e. effectively ?

While building fire safety codes and standards exist in almost every country … guidelines relating to the Fire Safety of People with Activity Limitations – IF those guidelines exist at all – are technically inadequate, entirely tokenistic, blatantly discriminatory, and rarely implemented.

This is a very significant obstacle to Effective Building Accessibility everywhere !!

Accessibility is now understood to mean the full cycle of independent building use, in an equitable and dignified manner … and this term includes the approach, entry to and use of a building, egress during normal conditions and removal from the vicinity of the building … and, most importantly, evacuation during a fire incident to a ‘place of safety’ which is remote from the building.  (ISO 21542 : 2011)

Cogently mandated in the United Nations Convention on the Rights of Persons with Disabilities (2006) … the CRPD’s principal aim is to ensure that the Built, Social, Economic and Virtual Environments are sufficiently ‘accessible’ to permit a vulnerable and major(!) population group in all of our societies to enjoy the fundamental freedoms and human rights described in the Universal Declaration of Human Rights (1948).

Refer to Preamble Paragraph (g) in the UN Convention …

‘ Emphasizing the importance of mainstreaming disability issues as an integral part of relevant strategies of sustainable development,’

and to … Article 3 (General Principles), Article 9 (Accessibility), Article 11 (Situations of Risk & Humanitarian Emergencies), Article 19 (Living Independently & Being Included in the Community), Article 20 (Personal Mobility), Article 24 (Education), Article 27 (Work & Employment), Article 31 (Statistics & Data Collection), Article 32 (International Co-Operation), and Article 33 (National Implementation & Monitoring).

The focus of this event, therefore, is Real Accessibility.  In other words, Effective Accessibility for People with Activity Limitations (which includes people with disabilities, and children under the age of 5 years, frail older people, women in the later stages of pregnancy, and people with health conditions, etc.) … an accessibility which actually works well for all potential building users.  And it is appropriate also, now, to introduce the concept of Monitoring and Targeting this ‘real’ accessibility … independently, i.e. by 3rd Parties !

It is time to Reboot this ridiculous, professionally negligent and obsolete old system … Reload with innovative and practical building design, construction, management and personal self-protection solutions … and Implement !

.

.

END

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Sustainable Fire Engineering Design – Targeting & MRV !

2014-04-20:  Traditional/Conventional Fire Engineering Practice is slowly, but inevitably, being transformed … in order to meet the regional and local challenges of rapid urbanization and climate change, the pressing need for a far more efficient and resilient building stock, and a growing social awareness that ‘sustainability’ demands much greater human creativity …

Design Target:  A Safe, Resilient and Sustainable Built Environment for All

Design Key Words:  Reality – Reliability – Redundancy – Resilience

Essential Construction & Occupancy Start-Up Processes:  Careful Monitoring & Reporting – Independent Verification of Performance (MRV)

.

Sustainable Fire Engineering Design Solutions:

Are Reliability-Based …
The design process is based on competence, practical experience, and an understanding of ‘real’ building performance and resilience during Extreme Man-Made Events, e.g. 2001 WTC 9-11 Attack & 2008 Mumbai Hive Attacks, and Hybrid Disasters, e.g. 2011 Fukushima Nuclear Incident … rather than theory alone.

Are Person-Centred …
‘Real’ people are placed at the centre of creative design endeavours and proper consideration is given to their responsible needs … their health, safety, welfare and security … in the Human Environment, which includes the social, built, economic and virtual environments.

Are Adapted to Local Context & Heritage *
Geography, orientation, climate (including change, variability and severity swings), social need, culture, traditions, economy, building crafts and materials, etc., etc.
[* refer to the 2013 UNESCO Hangzhou Declaration]

In Sustainable Design … there are NO Universal Solutions !

Design Objectives:

To protect society, the best interests of the client/client organization and building user health and safety, and to maintain functionality under the dynamic, complex conditions of fire … Project-Specific Fire Engineering Design Objectives shall cover the following spectrum of issues …

  • Protection of the Health and Safety of All Building Users … including people with activity limitations (2001 WHO ICF), visitors to the building who will be unfamiliar with its layout, and contractors or product/service suppliers temporarily engaged in work or business transactions on site ;
  • Protection of Property from Loss or Damage … including the building, its contents, and adjoining or adjacent properties ;
  • Safety of Firefighters, Rescue Teams and Other Emergency Response Personnel ;
  • Ease and Reasonable Cost of ‘Effective’ Reconstruction, Refurbishment or Repair Works after a Fire ;
  • Sustainability of the Human Environment – including the fitness for intended use and life cycle costing of fire engineering related products, systems, etc … fixed, installed or otherwise incorporated in the building ;
  • Protection of the Natural Environment from Harm, i.e. adverse impacts.

.

More Specifically … with Regard to Resilient Building Performance during a Fire Incident and the ‘Cooling Phase’ after Fire Extinguishment:

1.   The Building shall be designed to comply with the Recommendations in the 2005 & 2008 NIST(USA) Final Reports on the World Trade Center(WTC) 1, 2 & 7 Building Collapses.

In one major respect, the 2005 NIST Report is flawed, i.e. its treatment of ‘disability and building users with activity limitations is entirely inadequate.  The Building shall, therefore, be designed to comply with International Standard ISO 21542: ‘Building Construction – Accessibility & Usability of the Built Environment’, which was published in December 2011.

2.   The Building shall remain Serviceable, not just Structurally Stable(!) … until all buildings users (including those users with activity limitations waiting in ‘areas of rescue assistance’) have been evacuated/rescued to an accessible ‘place of safety’ which is remote from the building, and have been identified … and all firefighters, rescue teams and other emergency response personnel have been removed/rescued from the building and its vicinity.

The Building shall be designed to resist Fire-Induced Progressive Damage and Disproportionate Damage.  These requirements shall apply to all building types, of any height.

Under no reasonably foreseeable circumstances shall the Building be permitted to collapse !

3.   The Building shall be designed to comfortably accommodate and resist a Maximum Credible Fire Scenario and a Maximum Credible User Scenario.

.

Concerted International Research is Needed …

To creatively resolve the direct conflict which exists between Sustainable Building Design Strategies and Traditional/Conventional Fire Engineering.

An example … for cooling, heating and/or ventilation purposes in a sustainable building, it is necessary to take advantage of natural patterns of uninterrupted air movement in that building. On the other hand, fire consultants in private practice, and fire prevention officers in authorities having jurisdiction, will demand that building spaces be strictly compartmented in order to limit the spread of fire and smoke … thereby dramatically interfering with those natural patterns of air movement. The result is that the sustainability performance of the building is seriously compromised.

If, however, adequate independent technical control is absent on the site of a sustainable building … it is the fire safety and protection which will be seriously compromised !

To effectively deal with the fire safety problems (fatal, in the case of firefighters) which result from the installation of Innovative Building/Energy/EICT Systems and Products in Sustainable Buildings.

.

These are appropriate tasks for a new CIB W14 Research Working Group VI: ‘Sustainable Fire Engineering Design & Construction’ !

.

.

ENDEnhanced by Zemanta

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,

Search

 

December 2017
S M T W T F S
« Oct    
 12
3456789
10111213141516
17181920212223
24252627282930
31  

Links